

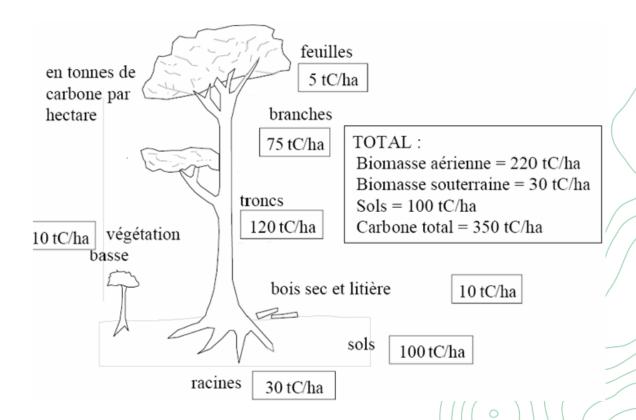
Biomass & forest inventory Method of inventory and calculation of biomass

Training from the FORAE Project



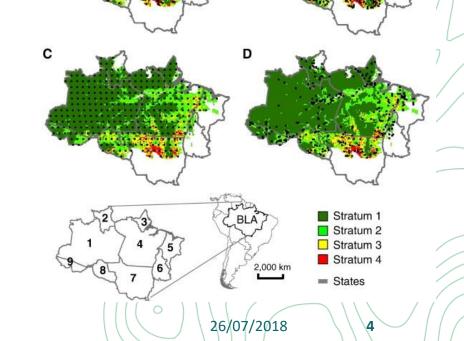
Forest – a carbon reserve

- Different pools containing carbon stocks
 - Trunks
 - Branches
 - Leaves
 - Roots
 - Litter
 - Dead wood
 - Soil



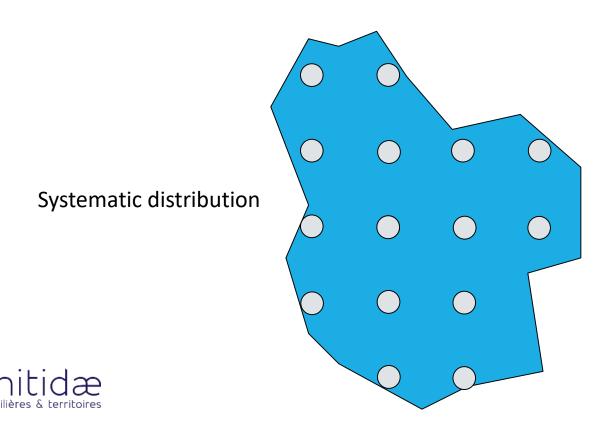
Forest – a carbon reserve

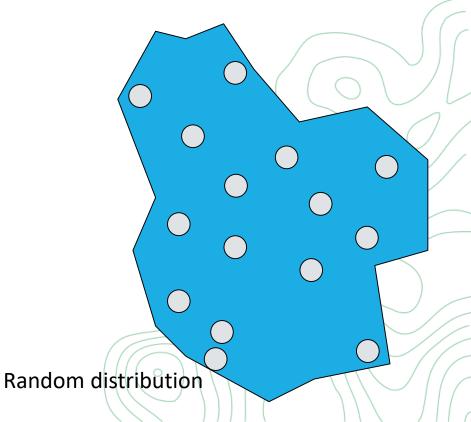
- Different pools containing carbon stocks
 - Trunks
 - Branches
 - Leaves
 - Roots
 - Litter
 - Dead wood
 - Soil



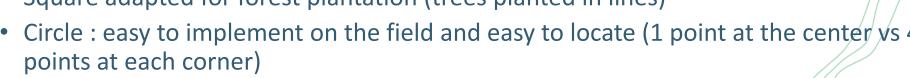
Stratification before inventory

• Divide your forest area into zones with the same characteristics in terms of carbon stocks or composition (biodiversity) according to


- State of forest: degraded forest, regeneration, mature forest, etc.
- Floristic composition
- Soil types and/or topography (fertility)
- Climate
- •



Plots distribution


- Systematic or random
 - Determine location on GIS before inventory
 - Or choose on the field if specific characteristics are targeted.

ype of plot

- Size
 - Between 100 and 1000 m²
 - For biodiversity: to be determined with area/nb of species curb
 - For biomass: area/biomass per ha curb
 - Try to have at least 20 trees in average
- Shape of the plot
 - Circle or square?
 - Square adapted for forest plantation (trees planted in lines)
 - Circle: easy to implement on the field and easy to locate (1 point at the center vs 4 points at each corner)

Tools

• To measure diameter

calliper Pied à coulisse

Compass Compas en C

Measuring tape for diameter Ruban diamétrique

Tools

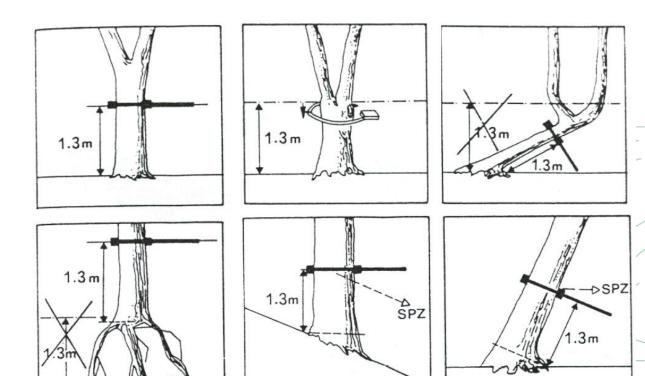
To measure tree height

Compass and hypsometer Boussole et hypsomètre Suunto

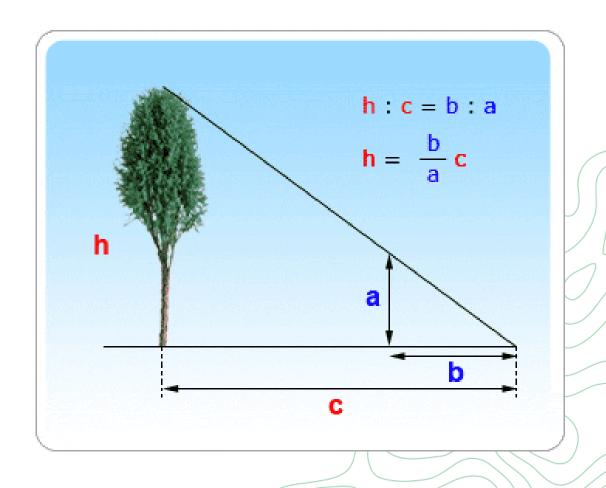
Vertex – electronic hypsometer Hypsomètre Vertex Forestor

Laser hypsometer Hypsomètre Ace Laser

Good measuring practices


- Diameter most important variable
 - Can be the only variable
 - Convention is Diameter at Breast Height (DBH) = 1.3 m
 - Use a wood stick of the appropriate length

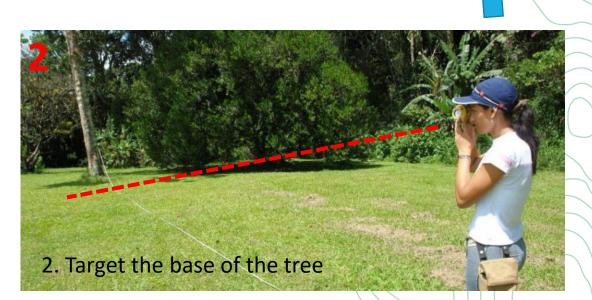
Good measuring practices


- Diameter most important variable
 - Can be the only variable
 - Convention is Diameter at Breast Height (DBH) = 1,3 m
 - Use a wood stick of the appropriate length
 - Account for deformation of trunks

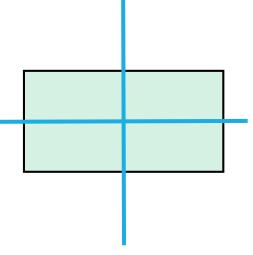
Good measuring practices

- Height
 - It depends on the measuring tool
 - Tools are based on the measurement of an angle
 - At least 2 steps :
 - Measurement of the distance to the tree
 - Measurement of the height

Mesurement of tree height



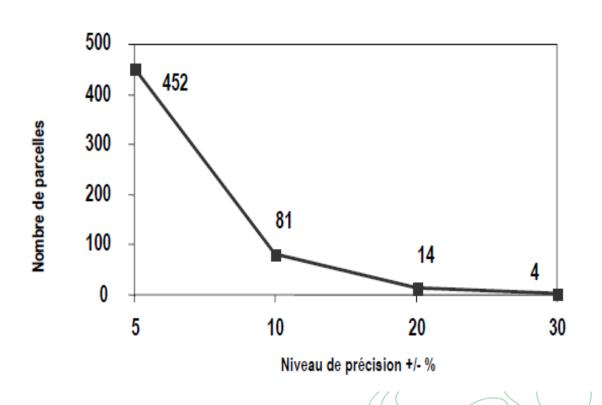
1. Standard distance



3. Target the top of the crown

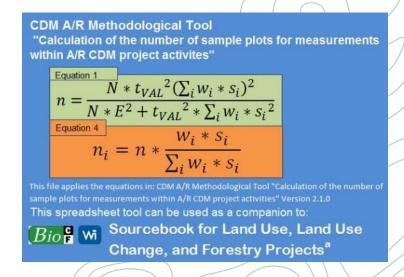
Measurement of dead wood

- On a transect
- Use measuring tape
- Usually, not a significant pool



Determine the number of plots

- Depends on
 - The level of accuracy
 - The variability of carbon stocks (or other indicator) between plots
- A number of plots per strata to be determined



26/07/2018

Determine the number of plots

- Easy way to determine the number of plots: using the tool developed by winrock
 - Downland at: https://www.winrock.org/document/winrock-sample-plot-calculator-spreadsheet-tool/
 - Need to have done some plots to start using the tool
- The tool calculates the number of plots needed per strata according to:
 - The level of error required
 - The area of the stratum
 - The mean carbon stock (it requires some inventoried plots)
 - The standard deviation (it requires some inventoried plots)
 - The size of the plot

- Use an allometric equation
 - Relation between aboveground biomass (AGB) and diameter, tree density and sometimes tree height
 - AGB = f(DBH, ρ, h)

- Use an allometric equation
 - Relation between aboveground biomass (AGB) and diameter, tree density and sometimes tree height
 - AGB = f(DBH, ρ, h)
 - The most used : Chave equation
 - It can exist local or national equations
 - To be preferred if they exist

Chave, 2005

- With or without H
- For dry and wet forests and mangroves

Oecologia (2005) 145: 87–99 DOI 10.1007/s00442-005-0100-x

ECOSYSTEM ECOLOGY

- J. Chave · C. Andalo · S. Brown · M. A. Cairns
- J. Q. Chambers · D. Eamus · H. Fölster · F. Fromard
- N. Higuchi · T. Kira · J.-P. Lescure · B. W. Nelson
- H. Ogawa · H. Puig · B. Riéra · T. Yamakura

Tree allometry and improved estimation of carbon stocks and balance in tropical forests

Wet forest stands:

$$\langle AGB \rangle_{est} = \exp(-2.557 + 0.940 \times \ln(\rho D^2 H))$$

$$\equiv 0.0776 \times (\rho D^2 H)^{0.940}$$

$$\langle AGB \rangle_{est} = \rho \times \exp(-1.239 + 1.980 \ln(D) + 0.207 (\ln(D))^2 - 0.0281 (\ln(D))^3)$$

- Use an allometric equation
 - Relation between aboveground biomass (AGB) and diameter, tree density and sometimes tree height
 - AGB = f(DBH, ρ, h)
 - The most used : Chave equation
 - It can exist local or national equations
 - To be preferred if they exist

Chave, 2015

- With or without H
- Pantropical

Global Change Biology (2015) 20, 3177-3190, doi: 10.1111/gcb.12629

Improved allometric models to estimate the aboveground biomass of tropical trees

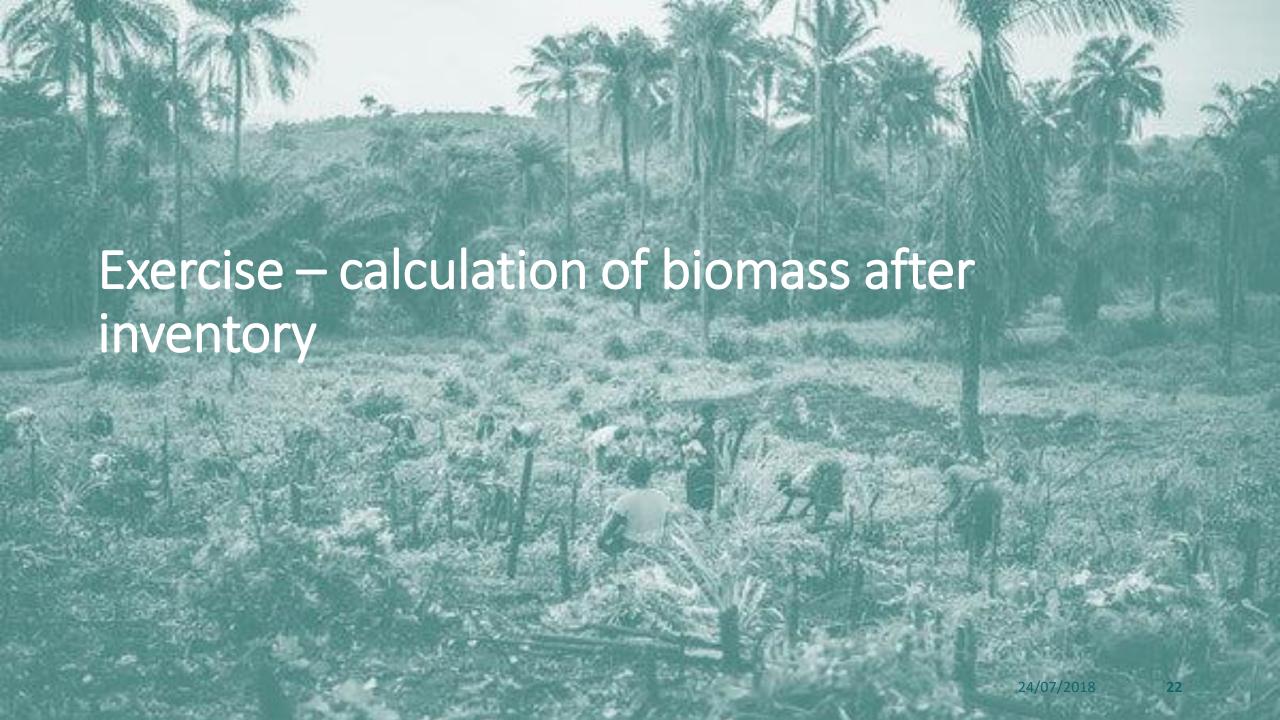
JÉR ÔME CHAVE¹, MAXIME RÉJOU-MÉCHAIN¹, ALBERTO BÚRQUEZ², EMMANUEL CHIDUMAYO³, MATTHEW S. COLGAN⁴, WELINGTON B.C. DELITTI⁵, ALVARO DUQUE⁶, TRON EID⁷, PHILIP M. FEARNSIDE⁸, ROSA C. GOODMAN⁹, MATIEU HENRY¹⁰, ANGELINA MARTÍNEZ-YRÍZAR², WILSON A. MUGASHA⁷, HELENE C. MULLER-LANDAU¹¹, MAURIZIO MENCUCCINI¹², BRUCE W. NELSON⁸, ALFRED NGOMANDA¹³, EULER M. NOGUEIRA⁸, EDG AR ORTIZ-MALAVASSI¹⁴, RAPHAËL PÉLISSIER¹⁵, PIERRE PLOTON¹⁵, CASEY M. RYAN¹², JUAN G. SALDARRIAGA¹⁶ and GHISLAIN VIEILLEDENT¹⁷

When we regressed tree AGB (kg) against the product $\rho \times D^2 \times H$, we found the best-fit pantropical model to be

$$AGB_{sst} = 0.0673 \times (\rho D^2 H)^{0.976}$$

 $(\sigma = 0.357, AIC = 3130, df = 4002)$ (4)

$$AGB_{est} = exp[-1.803 - 0.976E + 0.976 ln(\rho) + 2.673 ln(D) - 0.0299[ln(D)]^{2}]$$


E depends on geographical position – can be downloaded from Chave website

- ρ available in Global Wood Density Database (freely available)
 - Depends on the tree species genus
- Use of a root-to-shoot ratio for calculation of BGB
 - Standard value: IPCC 2006 Ch. 4 Forest
 - BGB = R.AGB

TABLE 4.4 RATIO OF BELOW-GROUND BIOMASS TO ABOVE-GROUND BIOMASS (R)				
Domain	Ecological zone	Above-ground biomass	R [tonne root d.m. (tonne shoot d.m.) ⁻¹]	References
Tropical	Tropical rainforest		0.37	Fittkau and Klinge, 1973
	Tropical moist deciduous forest	above-ground biomass <125 tonnes ha ⁻¹	0.20 (0.09 - 0.25)	Mokany et al., 2006
		above-ground biomass >125 tonnes ha ⁻¹	0.24 (0.22 - 0.33)	Mokany et al., 2006
	Tropical dry forest	above-ground biomass <20 tonnes ha ⁻¹	0.56 (0.28 - 0.68)	Mokany et al., 2006
		above-ground biomass >20 tonnes ha ⁻¹	0.28 (0.27 - 0.28)	Mokany et al., 2006
	Tropical shrubland		0.40	Poupon, 1980
	Tropical mountain systems		0.27 (0.27 - 0.28)	Singh et al., 1994

Exercice – calculation of mean biomass of a forest strata

- Existing inventory
 - Data for DBH, species and H available and filled into an Excel file
 - Forest type : dry forest
- Calculate:
 - Mean AGB in tdm/ha among the forest
 - Calculate total carbon stocks (AGB + BGB) in tC/ha
 - Calculate emissions related to deforestation in tCO₂/ha

