
Remote Sensing of Environment 115 (2011) 2613–2625

Contents lists available at ScienceDirect

Remote Sensing of Environment

j ourna l homepage: www.e lsev ie r.com/ locate / rse
MODIS NDVI time-series allow the monitoring of Eucalyptus plantation biomass

Guerric le Maire a,b,⁎, Claire Marsden a,c, Yann Nouvellon a,d, Clovis Grinand e, Rodrigo Hakamada f,
José-Luiz Stape g, Jean-Paul Laclau a,h

a CIRAD, UMR Eco&Sols, 2 Place Viala, 34060 Montpellier, France
b CIRAD, UMR TETIS, Maison de la Télédétection, 34093 Montpellier Cedex 5, France
c SupAgro, UMR Eco&Sols, 2 Place Viala, 34060 Montpellier, France
d USP, Atmospheric Sciences Department, Rua do Matão 1226, 05508-090 São Paulo, Brazil
e IRD, UMR Eco&Sols, 2 Place Viala, 34060 Montpellier, France
f International Paper do Brasil, Rodovia SP 340, Km 171, 13.840-970 Mogi Guaçu, SP, Brazil
g Department of Forestry and Environmental Sciences, North Carolina State University, Raleigh, NC 27695, United States
h USP, Ecology Department, Rua do Matão 321, 05508-900, São Paulo, Brazil
⁎ Corresponding author at: CIRAD, UMR Eco&Sols, 2 P
France. Tel.: +33 4 67 54 87 64; fax: +33 4 67 54 87 0

E-mail address: guerric.le_maire@cirad.fr (G. le Mair

0034-4257/$ – see front matter © 2011 Elsevier Inc. Al
doi:10.1016/j.rse.2011.05.017
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 23 February 2011
Received in revised form 23 May 2011
Accepted 29 May 2011
Available online 1 July 2011

Keywords:
Aboveground biomass
Moderate Resolution Imaging
Spectroradiometer
CBERS
WorldClim
Brazil
Forest
Fast-growing plantations
The use of remote sensing is necessary for monitoring forest carbon stocks at large scales. Optical remote
sensing, although not the most suitable technique for the direct estimation of stand biomass, offers the
advantage of providing large temporal and spatial datasets. In particular, information on canopy structure is
encompassed in stand reflectance time series. This study focused on the example of Eucalyptus forest
plantations, which have recently attracted much attention as a result of their high expansion rate in many
tropical countries. Stand scale time-series of Normalized Difference Vegetation Index (NDVI) were obtained
from MODIS satellite data after a procedure involving un-mixing and interpolation, on about 15,000 ha of
plantations in southern Brazil. The comparison of the planting date of the current rotation (and therefore the
age of the stands) estimated from these time series with real values provided by the company showed that the
root mean square error was 35.5 days. Age alone explained more than 82% of stand wood volume variability
and 87% of stand dominant height variability. Age variables were combined with other variables derived from
the NDVI time series and simple bioclimatic data by means of linear (Stepwise) or nonlinear (Random Forest)
regressions. The nonlinear regressions gave r-square values of 0.90 for volume and 0.92 for dominant height,
and an accuracy of about 25 m3/ha for volume (15% of the volume average value) and about 1.6 m for
dominant height (8% of the height average value). The improvement including NDVI and bioclimatic data
comes from the fact that the cumulative NDVI since planting date integrates the interannual variability of leaf
area index (LAI), light interception by the foliage and growth due for example to variations of seasonal water
stress. The accuracy of biomass and height predictions was strongly improved by using the NDVI integrated
over the two first years after planting, which are critical for stand establishment. These results open
perspectives for cost-effective monitoring of biomass at large scales in intensively-managed plantation
forests.
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1. Introduction

International agreements and regional markets now give an
economical value to forest carbon stocks in order to encourage
countries to increase or maintain these stocks for climate mitigation
purposes. Such economical assessments require precise and reliable
methods to estimate forest carbon stocks at large scales, for instance
through the development of remote-sensing applications, which has
become an active research field (Baker et al., 2010; Goetz et al., 2009).
The use of satellite-based estimations of carbon biomass is a
promising solution in terms of (i) cost- and time-effectiveness
compared to large-scale field inventories, (ii) integration of forest
spatial variability in regional synopses of carbon stocks, and (iii)
reactivity to high-impact disturbances such as deforestation and
afforestation.

Different types of imagery have been used to assess forest carbon
biomass from remote sensing. Interferometric radar and lidar data are
the most promising techniques for forest biomass estimation, and it is
recognized that optical imagery cannot reach the same level of
accuracy (Patenaude et al., 2005). However, the immediate need for
biomass and biomass change estimates across long time-periods and
large scales cannot be satisfied by active remote-sensing techniques,
meaning that optical imagery solutions are still essential (Powell et al.,
2010). The main limitation with optical remote-sensing is its rapid
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saturation with forest biomass: the reflectance signal in visible and
near infrared (NIR) is mostly correlated with the green leaf area index
(LAI) and canopy cover of the vegetation and saturates around an LAI
of 3–4 m2 m−2 (Anderson et al., 2004; Birky, 2001; Fassnacht et al.,
1997; Wang et al., 2005). Furthermore, wood biomass generally
becomes decoupled from LAI after a given stand age, since wood
biomass continues to increase after canopy closure. Therefore, a direct
relationship between spectral reflectance and forest biomass can only
be observed in cases where LAI is both low and correlated to biomass.
However, in most forests, LAI reaches values higher than 4 m2/m2,
and many factors other than stand age can degrade the correlation
between LAI and forest biomass (e.g. seasonal variations of LAI, effects
of tree density and canopy cover, variation of LAI caused by pest
infections or silvicultural practices, etc…). This has limited the use of
optical imagery to structurally simple forests, with low biomass, like
coniferous forests (e.g. Ardo, 1992; Lu, 2006; Trotter et al., 1997).
These methods rely mostly on local calibration and their usefulness in
large areas or other contexts is difficult to assess (Curran, 1980;
Labrecque et al., 2006).

Despite these limitations, optical images have proved to be
interesting if they were combined with other data, like bioclimatic
data (Baccini et al., 2004), stand age (Gebreslasie et al., 2010; Zheng
et al., 2004), lidar or radar data (Latifi et al., 2010; Lefsky et al., 2005;
Walker et al., 2007), or forest inventories data (Wulder et al., 2008).
High spatial resolution images allow the use of textural (Proisy et al.,
2007; Sarker and Nichol, 2011) or other ecosystem specific methodol-
ogies (Leboeuf et al., 2007) for biomass retrieval. Coarse spatial
resolution optical satellite images like AVHRR or MODIS, or medium
spatial resolution like Landsat or SPOT, have been acquired routinely for
years, and their acquisition will continue in the future. Multi-date
analyses of surface reflectance allow the examination of changes in
forest surface (Chirici et al., 2011; Goward et al., 2008). In addition, the
temporal variation of the radiometry can contain new information
about forest characteristics, and in particular aboveground biomass
(Dong et al., 2003; Powell et al., 2010). Indeed forest growth, and
therefore biomass accumulation, is a cumulative function of the net
production over time, which is linked to the total amount of absorbed
photosynthetically active radiation from the planting date, and
therefore could be linked to vegetation indices like NDVI cumulated
over time. This has been successfully used since the 80's for herbaceous
or agricultural ecosystems (Goward et al., 1985; Nouvellon et al., 2000;
Tucker et al., 1981, 1985).

In this study, we analyzed the potential of using continuous
reflectance time-series for the estimation of forest biomass. We used
the250 mresolutionMODISdata, and therefore anun-mixingprocedure
was necessary to estimate stand-scale reflectances, that were further
interpolated to produce continuous time-series. We focused on fast-
growing Eucalyptus forest plantations in Brazil, which have many
advantages for this type of analysis: forest inventories are precise and
numerous, stands are large and homogeneous, and short rotations
(6 years) enable themonitoring of reflectance since the planting date. In
addition, reliable biomass monitoring is of prime significance in
Eucalyptus plantations as (i) they are now a major worldwide tree
crop coveringmore than 20 million ha globally (of which 4.2 million ha
in Brazil, Iglesias-Trabado et al., 2009), and produce large amounts of the
wood used by industry for cellulose and charcoal production; (ii) they
are highly dynamic both in termsof growth (e.g. 40 m3/ha/yr on average
in Brazil, ABRAF, 2009) and expansion (e.g. 300000 hectares of new
plantations established per year in Brazil, Iglesias-Trabado et al., 2009);
and (iii) they are candidates for mitigation scenarios (Cerri et al., 2010)
such as Clean Development Mechanisms.

Our aimwas toprovide a cost-effective and easily applicable solution
for the estimation of Eucalyptus biomass, both at the individual stand
level and at larger scales.We sought to attain sufficient precision for the
analysis of biomass increments at a yearly time step. In this study, we
approached biomass through its proxies, volume and dominant height,
which are classically derived from forest inventories. We developed a
Direct Remote Sensing approach (Goetz et al., 2009) uniquely based on
the use of continuous time series of moderate resolution satellite data,
and compared the results with those obtained by including additional,
easily accessible bioclimatic variables. Our procedure can be summa-
rized in three steps: 1) unmixing of the MODIS pixel reflectance to get
stand-scale NDVI (Normalized Difference Vegetation Index) time-
series; 2) estimation of stand age through the analysis of the NDVI
time-series; and 3) application of linear and nonlinear regressions to
variables derived from the NDVI time-series and bioclimatic variables,
and comparison of estimated volumes and dominant heights of
individual forest plots with values extracted from a large dataset of
field inventories.

2. Material and methods

2.1. Study area

2.1.1. Plantation description
We studied the Eucalyptus plantations currently managed for

pulpwood production by the International Paper do Brasil company in
São Paulo state, south-eastern Brazil (Fig. 1). These fast-growing stands
are mainly planted with clones or seedlings of E. grandis (W. Hill ex
Maiden) x E. urophylla (S.T. Blake) hybrids and are currently harvested
every six to seven years. In typical plantation management, soil is
prepared with mechanical sub-soiling a fewmonths after each clearcut
harvest. New cuttings or seedlings are planted in rows at a density of
~1300 trees ha−1 and fertilized. Chemicalweeding is carried out during
the first year of growth, resulting in the absence of weeds or understory
in these plantations. Few stands (less than 1% of the surface) are
managed as coppice. The same management practices (e.g. dates of
harvesting andweeding, geneticmaterial) are usually carriedout for the
stands in the same local area. The Eucalyptusplantations cover 70,000 ha
within a 180×250 kmregionwhichpresents contrasted soil types, from
relatively unfertile sandy soils to more fertile soils with a higher
percentage of clay. Annual precipitation and temperature vary spatially
and from year to year, with a regional average of 1400mm and 20.2 °C,
and local spatial variations between 1250–1510 mm and 19.2–21.3 °C.
More than 80% of the rainfall occurs during the wet season between
October and April. Mean monthly air temperatures range from about
10 °C to 28 °C.

2.1.2. Forest inventory data
The company that manages these industrial plantations carries out

three inventories for each rotation, at ages of about 2 and 4 years, and
pre-harvest (5–6 years). Inventory plots have an area of 400 m2 and
are regularly distributed throughout the stand with a density of one
plot per 20 ha. An inventory consists in measuring the diameter at
breast height (DBH, 1.3 m above the ground) of each tree contained in
the inventory plot, the height of a central subsample of 10 trees, and
the height of the four trees of largest DBH (dominant trees). Themean
height of the four dominant trees defines dominant height (Hdom).
Hdom is used to calculate a site index (which corresponds to estimated
Hdom at the age of 7 years) on the basis of growth curves established for
each genetic material by the company. Site index, basal area and age at
inventorydate are then fed into a company-calibratedvolumeprojection
equation, specific of thegeneticmaterial, to estimate stemvolume at any
given age. The estimated volume is the volume of wood and bark of the
merchantable part of the stem that has a diameter of more than 2 cm.
Theplot-scale volume (V) is calculated as the sumof individual tree stem
volumes divided by the area of the plot. Plot-scale Hdom and V are then
averaged at stand scale, for each inventory date.

The company has a geographic information system with the
delineation of all the stands. Stand attributes are recorded in the
database, like the planting date, soil type, stocking density, etc. All small
trials, and stands with other species than Eucalyptus, were discarded.



Fig. 1. Location of Eucalyptus plantations used in this study, in Sao Paulo State, Brazil.
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The average size of remaining stands was 30.1 ha and their median size
was 25.4 ha. The largest stands had a surface of about 130 ha. The soil
types recorded in the database by the company were grouped into 9
main classes : AQ1 and AQ2 (Arenosols (FAO, 1998), N92% and 85–92%
sand in the surface horizon, respectively); LE1, LE2 and LE3 (Rhodic
Ferralsols, N60%, 40–60% and b40% clay in the surface horizon,
respectively); LV1, LV2 and LV3 (Xanthic Ferralsols, N30%, 10–30% and
b10% clay in the surface horizon, respectively); PV (Haplic Acrisols).

2.1.3. Bioclimatic data
WorldClim data (Hijmans et al., 2005) were used to spatially assess

main bioclimatic variables. WorldClim database provides monthly
precipitations, and mean, minimum and maximum temperature maps
with a resolution of 30 arc sec (~1 km resolution) for the period 1950–
2000. These maps were generated with data from a network of more
than 4000 weather stations worldwide (see Fig. 1 of Hijmans et al.,
2005), and interpolated spatially usingelevation fromSRTMand latitude
as covariables. We used the bioclimatic dataset (version 1.4), which are
maps of climatic variables calculated from monthly precipitations and
temperature maps. The bioclimatic variables calculated in WorldClim
capture annual and intra-annual variations of temperature and
precipitation (http://www.worldclim.org/bioclim), and are generally
used to link climate with vegetation classification or biogeochemical
functioning (Sesnie et al., 2008). For each stand of the GIS database, we
used the bioclimatic value from the 1 km2 pixel that contained the
center of the stand. All 19 bioclimatic variables given in WorldClim,
which encompass a large range of climatic indicators, were included in
our dataset to avoid a subjective a priori selection of the variable
(Table 1). The regression algorithms we used are able to deal with large
numbers of variables.

2.2. Remote sensing data and methods

2.2.1. Satellite images
We used the MODIS/Terra MOD13Q1 products (Vegetation Indices

16-Day L3 Global 250 m, Collection 5), which contain, among other
bands, 16-day red and near-infrared reflectances corrected for
atmospheric effects. Sun and viewing angles are also given, as well

http://www.worldclim.org/bioclim


Table 1
List of all variables calculated from MODIS NDVI time series, Worldclim and soil maps for use as predictor variables with SR and RF regression models.

Variable Abbreviation Mean Min Max std CV

VARage: Stand age, either from the company's records or estimated from NDVI time series
Stand age (years) A1 3.52 1.46 7.77 1.52 0.43
Squared age, Age2 A2 14.69 2.14 60.37 12.15 0.83
Logarithm of stand age, ln(Age) A3 1.16 0.38 2.05 0.43 0.37
Squared root of stand age, sqrt(age) A4 1.83 1.21 2.79 0.40 0.22
Sigmoid function of age, sigm(age) A5 0.39 0.01 1.00 0.39 1.01

VARNDVI: NDVI variables from stand-scale NDVI time-series
NDVI at inventory date N1 0.85 0.66 0.94 0.05 0.06
Cumulative NDVI from planting date to inventory date N2 974.29 365.38 2130.87 465.86 0.48
Cumulative NDVI from planting date to age one year N3 202.88 154.30 272.51 22.26 0.11
Cumulative NDVI from planting date to age two years N4 504.28 421.99 582.83 29.71 0.06
Minimum NDVI of the rotation N5 0.36 0.18 0.62 0.07 0.20
Maximum NDVI of the rotation N6 0.91 0.83 0.95 0.02 0.03
Mean NDVI of past wet seasons since planting date N7 0.84 0.72 0.92 0.04 0.05
Mean NDVI of past dry seasons since planting date N8 0.72 0.57 0.86 0.05 0.07
NDVI of former wet season N9 0.88 0.78 0.93 0.03 0.03
NDVI of former dry season N10 0.77 0.59 0.86 0.04 0.05

VARbioclim: Bioclimatic variables from WorldClim (in °C or mm)
Annual mean temperature T1 20.20 19.22 21.36 0.55 0.03
Mean diurnal range (mean of monthly (max temp - min temp)) T2 11.63 11.00 12.31 0.44 0.04
Isothermality (ratio between mean monthly temperature and annual temperature range) T3 0.64 0.63 0.68 0.02 0.02
Temperature seasonality (standard deviation) T4 21.47 17.58 23.18 1.42 0.07
Max temperature of warmest month T5 27.91 27.02 29.30 0.56 0.02
Min temperature of coldest month T6 9.96 8.96 10.95 0.47 0.05
Temperature annual range (T5-T6) T7 17.95 16.80 18.90 0.60 0.03
Mean temperature of wettest quarter T8 22.41 21.53 23.41 0.44 0.02
Mean temperature of driest quarter T9 17.21 16.22 18.53 0.68 0.04
Mean temperature of warmest quarter T10 22.43 21.62 23.50 0.44 0.02
Mean temperature of coldest quarter T11 17.13 16.21 18.30 0.59 0.03
Annual precipitation P1 1377.71 1255.00 1511.62 65.35 0.05
Precipitation of wettest month P2 253.49 230.00 274.62 11.44 0.05
Precipitation of driest month P3 22.15 17.00 25.00 2.64 0.12
Precipitation seasonality (coefficient of variation) P4 71.01 69.00 74.00 1.45 0.02
Precipitation of wettest quarter P5 692.80 634.00 761.62 32.51 0.05
Precipitation of driest quarter P6 81.63 63.25 92.00 9.37 0.11
Precipitation of warmest quarter P7 639.26 576.00 735.09 35.20 0.06
Precipitation of coldest quarter P8 97.53 73.81 114.00 10.50 0.11

VARsoil: soil type
Soil type, classified as the main soil types: AQ1,AQ2, LE1, LE2, LE3, LV1, LV2, LV3, PV S1
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as a Pixel Reliability criterion which classifies pixels according to their
quality. All data from the beginning of year 2000 to end of 2009 were
downloaded.

In addition to the MODIS data, we used high resolution images to
test the validity of our MODIS pixel unmixing procedure (described
below). We obtained 31 cloud-free China-Brazil Earth Resources
Satellite CCD sensor (CBERS-2 and CBERS-2B CCD) images, for dates
between 2003 and 2008 and for two sub-regions of the study area
(representing about 7700 ha of plantations). CBERS-2 digital counts
were converted to MODIS-like reflectance as described in le Maire
et al. (2011). 20 m resolution CBERS reflectances were then averaged
per stand using their polygon delineation. These stand red and NIR
reflectances based on high resolution images were used as a “best
reflectance estimate” which we compared to stand reflectances
derived from MODIS unmixing.

2.2.2. Unmixing, filtering and interpolating NDVI time-series
MODIS red and NIR reflectances had a 250 m resolution, which

rose the question of the use of such data at the scale of individual
stands, whose sizes vary from b5 to several tens of hectares (le Maire
et al., 2011; Marsden et al., 2010). A possibility was to un-mix MODIS
reflectance, in order to determine the contribution of different stands
to the reflectance of each pixel.

Different methods exist for the downscaling of coarse-resolution
images, ranging from very simple techniques to more complex data-
fusion approaches (Zurita-Milla et al., 2009). We implemented a
simple but yet efficient linear mixing model. This model assumes that
the reflectance of a large pixel is the result of the linear mixing of the
reflectance of its components, weighted by their fractional coverage of
the pixel. In our case, the reflectance of a MODIS pixel is the result of
the linear mixing of the reflectance of the stands that partly cover the
pixel:

ρ0
i;λ = ∑

n

j=1
f i;j × ρj;λ + ε i;λ ð1Þ

∑
n

j=1
f i;j = 1 0≤f i;j≤1 ð2Þ

with ρ′i,λ the reflectance of the ith MODIS pixel in the spectral band λ,
ρj,λ the reflectance of the jth stand in the spectral band λ, fi,j the
fractional area of pixel i that is covered by stand j, n the total number
of stands, and εi,λ the residual error.

The main hypotheses underlying Eq. (1) are: i) the reflectance of a
stand in a given spectral band is homogeneous in space, ii) the
positioning of stand polygons relative to MODIS pixels, considered as
squares, is perfect and independent of the spectral band, and iii) the
stand cover is spatially continuous, i.e. the reflectance of any small
road between stands is neglected.
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Considering all stands and pixels, the linear equation (Eq. 1) was
converted into a system of N equations (with N the number of MODIS
pixels considered), written in matrix-vector notation:

R0
λ = F × Rλ + ελ ð3Þ

with R′ the vector of the reflectance of all MODIS pixels (size N), R the
vector of the reflectance of all stands (size n), F the matrix of fractional
cross areas between pixels and stands, of size (N,n), and ε the vector of
residual error (sizeN). R′, R and εwere a function of the spectral band λ.

Generally, linear unmixing is applied to find the fractional
coverage matrix F, knowing R′ and with prior knowledge of R (called
the end-members vector). In our case, the aim was to determine R
based on R′ and prior information on F. There was no exact value of R,
but a best estimate of R can be foundwhich gives the smallest squared
distance between R′ and F×R, i.e. the smallest squared error ε. For this
purpose, we used the property of the Moore-Penrose pseudoinverse
of F, called F+ (Penrose, 1955). The product of F+and R′ is the unique
solution which minimizes the error. The result of this procedure
highly depends on the conditioning of the F matrix. If the matrix is ill-
conditionned, the results are very poor. In the case of our Eucalyptus
plantations, the stand sizes are large compared to a MODIS pixel size,
therefore i) the system is overdetermined (many more pixels than
stands), and ii) the F matrix is generally well-conditioned, provided
small stands and border pixels are filtered out. By trial and error, we
found that this filtering had three different thresholds: i) stand size
must be larger than 5 ha, ii) a stand must cover at least 40% of at least
one pixel, and iii) a pixel must be at least 75% covered with Eucalyptus
(in one or several different stands). Thresholds ii) and iii) allow a
tolerance on pixels at the border of a plantation, which are partially
covered with other land-use classes than Eucalyptus. In this way, more
stands can be kept in the final dataset, but border stands are affected
by a larger error. Note however that with this methodology, border
errors hardly propagate to other stands. The pseudoinverse method
also has technical advantages: F+ only has to be computed once, since
F is considered to be stable with time and spectral bands during the
10 year period, and the calculation of stand-scale reflectance is
therefore very fast.

Forpractical reasons the calculationswere separated into 25 zones of
grouped Eucalyptus plantations. Since a MODIS image is composite, we
used the mode of the acquisition date distribution for all MODIS pixels
within a zone as a reliable estimate of the date of image acquisition, and
the image was kept for applying the unmixing equation only if more
than 95% of the pixels within a zone had the best Pixel Reliability value
and had a viewing angle lower than 35°.

These simple equations allowed the calculation of the best
estimates of stand reflectances, for each MODIS acquisition date.
The error of the method was first assessed through the root mean
square error of measured vs. simulated MODIS pixel reflectance after
stand reflectances R were calculated (RMSEpix, Eq. 4):

RMSEpixλ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

∑
N

i=1
εi;λ

� �2

s
ð4Þ

Finally, the reflectance of the “nearest MODIS pixel”, i.e. the most
central pixel of the stand (if the stand contained several pixels) or of the
pixel covering the largest fraction of the stand, was extracted for
comparison with the stand reflectance obtained using the unmixing
methodology. Both methods (linear unmixing and nearest pixel) were
compared to the stand reflectanceobtained fromCBERS-2 images, at the
different dates (31 images), with root mean square error calculations
(RMSEstand).

Once MODIS NIR and Red reflectances were obtained for each stand
and date, the NDVI was calculated as (NIR-Red)/(NIR+Red), and we
finally fitted a smoothing cubic spline function to the NDVI time-series
of each stand. The parameters of the cubic spline were chosen to get
smoothed values as close as possible to the data, while reducing abrupt
discontinuities thatwere not coherentwith vegetation functioning (see
Marsden et al., 2010). This smoothing eliminated variations that
occurred on a short time scale, not reflecting canopy changes, but
rather due to varying viewing angles and residual errors from the
atmospheric correction and unmixing procedures. As in Marsden et al.
(2010), the smoothingwas not very strong since the RMSE of smoothed
vs. raw NDVI was lower than 5%. The cubic spline was then used to
interpolate the NDVI time series to daily values.

2.2.3. Planting date retrieval
One of the most important variables used in this study was the

planting date of each Eucalyptus stand. While the planting dates were
recorded in the company database, and were therefore easily available,
we chose to estimate the planting date from the remotely-sensed NDVI
time-series. This was important in view of future applications of our
findings, at large scales or in situations where company data is
inaccessible or incomplete.

Because MODIS was launched in 2000, it has been possible since
~2007 to use the data to estimate the planting date of most Eucalyptus
stands currently standing in Brazil, as their rotation length rarely
exceeds 7 years.

We used the signal of the clear-cut of the preceding rotation as a
robust indicator of planting date. This signal appears unequivocally on
the time-series as a sharp decrease of the NDVI, giving a precise
estimation of the harvesting date. Theplanting date of the next rotation
can then be inferred reliably by the addition of a certain time-shift (two
to three months in these plantations). The planting date itself is difficult
to detect directly, because the increase in NDVI immediately after
seedlings are planted is generally slow and irregular (short peaks can be
due to transitoryweedgrowth for example), so soil orweedNDVI cannot
be distinguished from that of young seedlings. In addition, the period of
lowestNDVI (aftermaximumdegradationof harvest residues andbefore
planting) is short andcan therefore bemissedby the16-dayMODISdata,
meaning that theminimumNDVI of the time-series does not necessarily
reflect the timing of a true minimum just before planting.

The harvesting date automatic retrieval method was based on a
moving window of length a, that was split in two. The difference
between the average NDVI of the first half and that of the second half
was an estimation of the strength of the decrease for the central date
of the window. For a given stand j, the window was moved along the
NDVI time-series, and the date Dhj when the difference was largest
was recorded as the best estimate of harvesting date.

We calibrated the value of a by testing all values ranging from 3 to
300 days. The date Dhj(a) was recorded for each value of a and for
each stand j. Then we selected the value of a that gave the highest
correlation coefficient between Dh and Dp, where Dp were the
planting dates recorded by the company. Once a was calibrated, the
average difference Lag between Dh and Dp gave the average number
of days between the estimated former rotation harvesting date and
the present rotation planting date. Planting dates were then estimated
as Dh+Lag, and tested against company-provided planting dates on a
randomly-selected subset of the database (30% of the stands, which
were not used to calibrate a).

2.2.4. Variables describing the NDVI time-series
For each stand two smoothed NDVI time-series were prepared, one

starting at the estimated planting date and the other starting at the
planting date given by the company. This allowed us to test the
efficiency and assess the errors generated by using the estimated
planting date instead of the real planting date. A number of variables
describing the NDVI time-series after planting date were used, and are
described in Table 1. These variables were chosen from known
properties of the NDVI time-series (Marsden et al., 2010), to describe
most of their discriminating features. Two of these variables required
that the plantation bemore than two years old: the cumulative value of
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NDVI from 0 to 2 years (N4), and the maximum NDVI value of the
rotation (N6), which generally occurs around two years of age.

2.3. Statistical modeling

Several linear and non-linear regressions were performed on the
dataset created (Table 2). The variables we wished to estimate were
stand dominant height Hdom (m) and stand merchantable wood
volume V (m3.ha−1).We tested various a priori variables in themodels,
from age-only variables to increasingly complex variable combinations
(Table 2). All these models were fitted with the same number of
observations (i.e. 347 stands with all the information required).

Stepwise multilinear regressions (SR) aimed at automatically
choosing a set of predictive explanatory variables among all possible
variables, here with a criterion based on the partial F-statistic, with
α=0.05 as a threshold for adding or removing a predictor variable.
Differentmodels were examined. The first andmost simplemodel SR1
(or SR1′) used only estimated (or real) stand age variables as inputs.
Since it is well known that the relationship between age and biomass
is generally non-linear, we included a set of five different trans-
formations of the age variable: age, age2, ln(age), 1/age, and sigm
(age), where sigm is a sigmoid filter function. The second model SR2
(or SR2′) consisted in using both estimated (or real) age variables and
variables extracted from the NDVI time-series. The last model SR3 (or
SR3′) further included the WorldClim bioclimatic variables. These
stepwise regressions resulted in the selection of a set of explanatory
variables with associated linear regression coefficients.

For comparison with the SR models, we performed nonlinear
nonparametric regressions using a regression tree algorithm called
RandomForest (RF) (Breiman, 2001). Tree-based algorithms recursively
split the data into twogroups,where thegroups aremore homogeneous
than the unpartitioned data. When the variability within the node is
considered sufficient, or when a pre-defined number of classes is
reached, the splitting procedure stops. Random Forest combines the
tree-based regression and a bootstrap aggregation algorithm (Breiman,
2001). Bootstrap aggregation is a method to average predictions from a
collection of bootstrap samples, which provides a valid tool for tuning
and improving the accuracy of the predictions (Breiman, 1996).
Compared to standard tree-based models, Random Forest is less
sensitive to noise in the training data and tends to result in more
accurate models. It can deal with large numbers of independent
variables, high-order interactions and correlated predictor variables.
RF also has the advantage of handling categorical variable as inputs. It
was used to estimate the above-ground biomass of forests with high
accuracy, e.g. in the United-States (Baccini et al., 2004; Powell et al.,
2010), Russia (Houghton et al., 2007) and Africa (Baccini et al., 2008),
and it proved to be more efficient in terms of accuracy than other
regression approaches (Powell et al., 2010).
Table 2
a priorivariables used for thedifferentmodels. VARage: age variables (see Sections2.2.3, 2.3
and Table 1); VARNDVI: NDVI-based variables (see Section 2.2.4 and Table 1); VARbioclim:
bioclimatic variables (see Section 2.1.3 and Table 1); VARsoil: soil type (Table 1).

Age Model Type Variables

Age from company
database

SR1′ Stepwise multilinear
regression

VARage

SR2′ VARage, VARNDVI

SR3′ VARage, VARNDVI, VARbioclim

RF1′ Random forest
regression

VARage, VARNDVI, VARbioclim

RF2′ VARage, VARNDVI, VARbioclim,
VARsoil

Age from MODIS
estimations

SR1 Stepwise multilinear
regression

VARage

SR2 VARage, VARNDVI

SR3 VARage, VARNDVI, VARbioclim

RF1 Random forest
regression

VARage, VARNDVI, VARbioclim

RF2 VARage, VARNDVI, VARbioclim,
VARsoil
Results from RF1 or RF1′ models (Table 2) were compared to
results obtained with SR3 or SR3′. The improvement of prediction
accuracy achieved by including soil type variables was assessed by
comparing the additional RF2 model to RF1 (or RF2′ to RF1′).

The RF algorithm acts as a black box. However several indices were
computed to allow the exploration of the model itself: the mean of
squared residuals and the percentage of variance explained for the
bootstrap sample predictions (named “out-of-bag”, Breiman, 2001),
and the importance of each variable which was represented by the
“mean increase in accuracy” (%IncMSE). All calculations were carried
out with the R package randomForest (Liaw and Wiener, 2002).

All models given in Table 2 were calibrated on 70% of the stands
selected randomly, and the remaining 30% were used for testing the
predictive capacity of the models. This random selection of 70% of
stands was repeated 50 times, and four statistics were calculated each
time: the coefficient of determination R2 and root mean square error
RMSE between regression-based and inventory-based estimates of
stand wood volume and dominant height. These 50 pairs of R2 and
RMSE estimates were presented as box-plots, and their median values
served as overall estimates of the model performance. The final
equations for SR models, given in this paper, were calculated with the
entire dataset.

3. Results

3.1. Unmixing

The RMSE of measured vs. estimated MODIS pixel reflectance after
stand reflectances Rwere calculated (RMSEpix) were low: 0.0068 and
0.0175 for RMSEpixRed and RMSEpixNIR, respectively. The RMSEpix
values were stable with time, for the ~130 dates of the MODIS time-
series that were retained after filtering (data not shown).

The RMSEstand between stand reflectance obtained from MODIS
(unmixing or nearest pixel methods) and stand reflectance from the
corrected CBERS-2 high resolution images were lower than 0.008 and
0.017 for RMSEstandRed and RMSEstandNIR, respectively (Fig. 2). Stand
reflectances were retrieved without bias. These low RMSEstand
validated the use of MODIS images to estimate stand-scale reflectance.

The unmixing method led to significantly smaller RMSE and higher
r2 for both bands, compared to the simple “nearest pixel”methodology
(Fig. 2). This improvement concerned all stand sizes (not shown). The
unmixingmethodologywas therefore used as a trustworthy and simply
applicable method to get Eucalyptus stand reflectance from MODIS
250 m resolution reflectance.

3.2. General behavior of Eucalyptus NDVI time series

Eucalyptus NDVI time series presented a typical pattern of variations,
which can be explained by the management and phenology of the
plantations. Fig. 3 shows theNDVI time-series of a single stand, together
with the cubic spline smoothed curve. The harvesting date of the
previous rotation is clearly visible, with a sharp drop of NDVI values.
Fig. 3 presents the averaged and standard deviation of NDVI-smoothed
time-series of all stands as a function of time, starting on the 1st January
of the year of planting. The NDVI starts at values close to soil values, then
rises very rapidly during the two first years, up to a maximum value
around the second year. The inter-stand variability during this period is
very high because of planting dates that occur progressively throughout
the first year. After the second year, the NDVI remains high, with a
noticeable seasonal decline during dry seasons due to leaf shedding and
slowed leaf production (le Maire et al., 2011). The maximum and
minimum annual NDVI reduce from the second year to the end of the
rotation, which is represented by dashed lines in Fig. 4. All these
characteristics resulted in thedefinitionof a series of variables describing
the NDVI time-series of a stand. These variables are listed in Table 1,



Fig. 2.MODIS estimation of stand reflectance compared to high resolution CBERS stand
reflectance, for Red (black dots) and NIR (gray dots) reflectance. MODIS stand
reflectance estimations come either from the unmixing methodology (top) or from the
nearest pixel methodology (bottom).

Fig. 3. Example of a stand-scale MODIS NDVI time series obtained after the unmixing
procedure and smoothed by a cubic spline function. The harvesting date of the former
rotation and the planting date estimated as described in the text are shown together
with the real planting date from company records.

Fig. 4. Typical NDVI age course of a Eucalyptus stand. The continuous line is the averaged
NDVI-smoothed time-series of all stands as a function of time, and the dotted line
delimiting the gray area is +/− their standard deviation. Here the time axis starts on
1st January of the planting year. Dashed lines show the linear fit of annual minimum
and maximum NDVI values.
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together with their range of variation and average values across all
stands.
3.3. Planting date estimation

The algorithm allowed the estimation of the planting date with a
root mean square error of less than 40 days. Fig. 5 shows the
comparison of the estimated harvesting date Dh with the planting
Fig. 5. Former rotation harvesting date retrieved with MODIS NDVI time series
compared to planting date from company records. The lag was estimated to be 73 days,
and the RMSE once corrected for this lag was 35.5 days.
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date Dp, with the best value of the window size a=194 days. Values
of a comprised between 160 and 240 gave similar results. The
correlation was very high both for the calibration and test dataset
(r2N0.99). The average difference Lag betweenDp andDhwas 73 days,
which can be interpreted as the average number of days between the
harvesting date of the former rotation and the planting date of the
current rotation. After the planting dateswere estimatedby adding Lag
to Dh, the RMSE of the estimation was 35.5 days on the calibration
dataset and 37.9 days on the test dataset. A visual example of the
estimation of the planting date is given in Fig. 3 for one particular
stand.

Fig. 6 shows the box plot of the delay (Dh-Dp) for each month,
whatever the year. The residuals are fairly well distributed around the
mean: the delay between harvesting and the following planting date
did not vary seasonally.

3.4. Estimations of volume and dominant height

The coefficient of determination and RMSE of the prediction of
stand volume and dominant height when using the planting date from
inventory or when using the planting date estimated from the NDVI
time-series were not significantly different. The results for volume
estimation are presented in Fig. 7, and a very similar pattern of model
performance held for Hdom (not shown). For instance, the estimation
of wood volume (V) gave a RMSE of 24.5 and 26.3 m3 ha−1 with SR3′
(using the company planting dates) and SR3 (using estimated planting
date) models, respectively, and 1.33 and 1.62 m for dominant height
(Hdom) estimations.

The results of SR and SR′models showed progressive improvement
when NDVI and bioclimatic variables were added successively to age
variables (Fig. 7). Models SR1 and SR1′, which used only age variables
as predictive factors, already explained more than 82% and 87% of the
variability of V and Hdom, respectively. These values increased to 86%
and 90%when variables from the NDVI time-series were added, and to
90% and 92% when bioclimatic variables were added. Finally, the RF1
and RF1′models performed similarly to the SR3 and SR3′models. RF1
and RF2 models were not significantly different, i.e. adding the soil
type as a new categorical variable did not improve the model results.

Variables selected in the SR models differed slightly (Table 3). The
SR1 models included both age and transformed age variables.
Although age variables were correlated, this result showed that the
age-V and age-Hdom relationships were non-linear. For the SR3
Fig. 6. Boxplots of the delay (days) between the harvesting date, retrieved with MODIS
NDVI time series, and the next planting date, given by company inventories, for each
month. The boxes of a boxplot represent the median value, upper and lower quartiles, the
whiskers are 1.5 times the upper and lower interquartiles range, and crosses are outliers.
models, A (age-related), N (NDVI-related), T (temperature-related)
and P (precipitation-related) variables were used.

Fig. 8 presents all the variables classified by order of importance
in the RF2 models. The variables that had a high “importance” value
(%IncMSE) were similar in the RF2 model for V and for Hdom. The
cumulative NDVI from planting date to inventory date (N2) was the
most important variable for the estimation of V andHdom. This variable
encompassed information about age and about the fluctuations of the
NDVI time series. All age variables had very similar importance values,
since theywere only transformedwith nonlinearfilter functions, and RF
is a nonlinear regression method. Similarly to what was observed with
SRmodels, age explained a large part of the V and Hdom variability. The
cumulative NDVI of the first two years of growth appeared as one of the
most important variables. Temperature variables were found to be the
next most important bioclimatic variables. These variables referred
mainly to the local thermal amplitude and minimal temperatures.
Finally, precipitation variables, like the average yearly precipitation, and
precipitation of the wettest and driest quarter were also important.
Below a threshold of 10% of the importance %IncMSE, we considered
that variables had a low explanatory effect. As expected from the
comparison of RF2 and RF3 R2 and RMSE, soil type had a very low
importance in both volume and dominant height models.

A predicted vs. measured scatterplot of Hdom and Vwas drawn for
illustrative purposes for one of the randomly-selected test sets (Fig. 9).
The estimations of Hdom were close to the 1/1 line for all values,
whereas high volumes were underestimated (above 250 m3 ha−1).
The bias was lower with the RF models than with the SR models. RF
models showed better results than SR models on the calibration
dataset, but similar results on the test dataset. This couldmean that the
RF model over-fitted the calibration dataset, but without worsening
the final results on the test dataset.

4. Discussion

4.1. Unmixing

The MODIS-derived stand reflectance estimations were close to the
reference stand reflectances inferred from high resolution images. The
remaining discrepancies could be due to certain hypotheses of the
methodology thatwerenot completely fulfilled. Firstly, despite company
efforts to homogenize tree growth within each plot, the spectral
reflectance of a stand may show some heterogeneity at ~100 m scale,
if for instance the stand is located on a gradient of soil fertility. The
second hypothesis postulates that the positioning of MODIS pixels,
considered as squares, and stand polygons is perfect and independent of
the spectral band. The georeferencing of stand polygonswas goodwhen
compared to high resolution images. However, stand polygons were
difficult to compare with MODIS images because of their 250 m
resolution and MODIS registration errors (Wolfe et al., 2002), and
someerrorsmay arise from this. In addition,MODIS pixels are not square
and their effective footprint depends on the acquisition geometry
(Wolfe, 2006;Wolfe et al., 2002): even if most of the images were taken
with viewing angles lower than 20°, some images may have angles
between 20 and 35°, and therefore pixels with an effective resolution of
more than 250 m. Finally, we assumed that all stands have continuous
cover, which is not the case (they can be crossed by roads, small rivers,
etc.). These possible departures from our hypotheses highlight the
importance of the stand and pixel filtering step of the unmixing
procedure. Accordingly, a complete sensitivity analysis of the three
filtering thresholds given in Section 2.2.2 should be carried out, to test
the validity of the chosen configuration.

Despite the remaining errors, the unmixing procedure was useful as
it gave slightly better results than the “nearest MODIS pixel method”.
Finally, an important and promising feature of the procedure is that,
contrary to the user-dependent selection of “nearestMODIS pixels”, it is
easy to implement objectively, automatically and at large scales.



Fig. 7. Volume prediction: boxplots of R2 and RMSE obtained using the different models described in Table 2. Each model was applied 50 times, each time on a different randomly-
selected test sample (30% of the stands).
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4.2. Planting date estimation

The planting date retrieval algorithm showed good performance for
the purpose of this study, as the use of the MODIS planting date in the
models instead of the company plantingdid not significantly change the
results (Fig. 7).However, the RMSEof theprediction of the plantingdate
(35.5 days) is still high and it may require further improvement. There
are differentpossibilities for improving these results: thefirst onewould
be to compare the MODIS-derived harvesting date with the harvesting
date recorded by the company, to separate the error of harvesting date
retrieval from that of the hypothesis of a constant delay between
harvesting and planting date (Lag parameter). However, the harvesting
date was not always recorded in the database, and was subject to some
uncertainties (sometimes it was given as a window period for a small
region, and moreover the duration of the harvesting operation is
Table 3
Equations of stepwise regressionmodels (SR) for estimating Eucalyptus stand volume and sta
in Table 2. These equations were obtained on the complete stand dataset.

Model Equation

SR1′ V=97.423 A1−6.201 A2−123.142
Hdom=−82.868 A1−290.761 A3+652.230 A4−10.864 A5−541.909

SR2′ V=−41.139 A1+355.696 A4+0.646 N4−72.185 N5−591.300 N6+21
Hdom=−0.710 A1+15.879 A3+0.034 N4−5.667 N5−54.152 N6+5.6

SR3′ V=112.016 A1−5.705 A2−56.634 A5+0.470 N3+141.490 N8−3.899
Hdom=13.640 A3+0.041 N3−0.020 N4+11.284 N8−0.144 T6−1.035

SR1 V=−3045.625 A1+59.496 A2−5932.479 A3+16402.933 A4−13184.30
Hdom=−240.376 A1+4.645 A2−464.587 A3+1290.876 A4−1028.369

SR2 V=102.385 A1−5.036 A2−48.513 A5−75.514 N1−0.569 N3+0.944 N
Hdom=−201.411 A1+4.377 A2−344.875 A3+1022.089 A4−7.849 N1

+6.342 N10−798.756
SR3 V=86.043 A1−4.385 A2−0.544 N3+0.803 N4−578.356 N6+106.216

Hdom=−116.788 A1+2.522 A2−184.986 A3+570.347 A4−6.820 N1
−0.607 T9+0.353 T10+0.992 T11+0.007 P1−495.462
variable between stands). A second possibility would involve the use of
daily MODIS data (MOD09GQ product) rather than 16-day composite
data. Finally, the combined use of harvesting date estimations with
some feature calculated on the moving window related to the initial
increase of the NDVI after planting may also improve the planting date
estimation.

4.3. Volume and dominant height estimations

The different models presented here proved that it was possible to
estimate wood volume and dominant height with a good accuracy,
using optical remote-sensing data: the RMSE was around 15% of the
mean value for volume and 8% for Hdom. Sources of uncertainty in our
methodology include the use of continuous NDVI time-series, which are
affected by measurement errors due to residual atmospheric effects,
nd dominant height. The variables are described in Table 1 and themodels are described

4.896 N8−294.436
93 N7+17.162 N8+8.770 N9+12.224
T2−6.773 T6−11.135 T9+20.031 T11+10.440 P4+2.137 P6−1657.383
T9+1.166 T11−0.219 P2+0.088 P5−16.102
6

4−536.308 N6+163.648 N8−67.619
−0.034 N3+0.054 N4−3.736 N5−50.600 N6+11.747 N7+12.833 N8

N7+163.784 N8−0.525 P2+0.373 P7−0.365 P8−157.552
+0.011 N2+0.011 N4+8.235 N7+7.303 N8−14.424 N9−0.451 T2−0.542 T6



Fig. 8. Classification of the variables by decreasing order of importance in the RF2 models for stand volume (top) and dominant height (bottom). Categories of variables are
represented by different levels of gray, and variable descriptions are given in Table 1. The average and standard deviations of the importance (%IncMSE) were calculated on the 50
repetitions of test sample random selection (30% of the stands each time).
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viewing geometry variability, and lack of data. Stand reflectances can
also be affected by weeds or unusual understory development.

The accuracy of this method, with a RMSE of around 25 m3/ha is
comparable to RMSE estimations published for airborne SAR methods
that are of around 30–40m3/ha (Gama et al., 2010). Our method is
however largely superior to other passive optical methods. For instance,
Figs. 3 and 4 show thatNDVI values are not at all related to stand volume
or dominant height, that increase continuously with stand age. The
accuracy of our method relies mainly on the use of continuous and long
NDVI time series. These time series carried very useful information on
stand age andon integrated variations of absorbed radiation. InMarsden
et al. (2010), it was shown that the NDVI and the fraction of absorbed
radiation are closely related on these Eucalyptus stands. Therefore, the
cumulative NDVI should be roughly correlated with the photosynthet-
ically-active radiation (PAR) absorbed by the stand (e.g. Goetz and
Prince, 1996). This explains why the variables representing cumulative
NDVI since planting date were among the most important variables in
the statistical models. Marsden et al. (2010) also showed, on another
smaller dataset, that the cumulativeNDVI of thefirst twoyears of growth
was one of the most important variables for V and Hdom estimations.

TheNDVI alone, even integrated, does not explain all the functioning
of the stand. Trees may suffer from periodic water stress or nutrient
deficiencies that may not necessarily affect NDVI variations (and
therefore the absorbed PAR) but are likely to affect the light use
efficiency (Marsden et al., 2010). Management practices (fertilizing,
weed control, coppicing) andclimatemay also vary significantlywithin a
large region like that considered in this study. Some of these differences
were taken into account in the models SR3, RF1 and RF2 that included
bioclimatic variables. It is difficult to analyze why some bioclimatic
variables were selected within the regression models, with an
ecophysiological point of view. A process-based modeling approach
would be necessary to disentangle the different effects of climate on
plantation growth. However, forest plantation productivity is known to
be largely affected by numerous abiotic and biotic variables that can
interact. For instance, it is well known that cold temperatures reduce
Eucalyptus plantation growth (Davidson et al., 2004; Sands and
Landsberg, 2002), which probably led to the significance of some
variables in the models (like the T6 variable, minimum temperature of
the coldestmonth). Annual precipitationwas also variable in the region,
and both the rainfall of the wet season and that of the dry season
influenced stand volume and dominant height. The dry season influence
is quite direct, since water stress directly limits photosynthesis and
therefore stand growth (Cabral et al., 2011; White et al., 2009). Wet
season rainfallfills the soilwater reserve: in these regionswithverydeep
soils, Eucalyptus roots can reachdepths ofmore than 15mat the end of a
rotation (Christina et al., 2011). As a consequence, almost all of the
incoming rainfall is evapotranspired by the vegetation after canopy
closure (at around 2 years of age). It is important to note that the soil
type did not bring more information in the RF models. An accurate
characterization of soil properties is difficult at the stand level and large
differences in stand growth depending on soil types were accurately
accounted for by other variables (NDVI-derived, in particular) in RF
models. This constrainthavingbeeneliminated, thevolumeanddominant
height estimation models can therefore be applied independently of soil
types data. The quality of theWorldClim bioclimatic data is dependent on
the density of the weather stations used in the interpolations. The region
where the study was performed is one of the tropical regions with the
highest weather station density for temperature and precipitation data
and therefore quality controls were correct (Hijmans et al., 2005).

Our study confirmed that regression trees like the Random Forest
algorithm are a flexible and accuratemodeling framework for biomass
estimation from remote sensing data, as underlined in Powell et al.
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Fig. 9. Illustration of predicted vs. measured volume and dominant height for one of the 50 calibration and test datasets that were used in Figs. 6 and 7. The R2 and RMSE were
calculated for the test sample (red dots).
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(2010), Moisen and Frescino (2002) or Blackard et al. (2008). The
statistical models we presented could however benefit from further
improvements, for example by including additional sources of data in
the analysis. The useof localmeteorological data fromfield stationsmay
better explain the interannual variability in growth and in structural
characteristics of the plantations than our rough estimates of bioclimatic
variables, and for the 2000–2010 period (bioclimatic variables are
calculated in WorldClim for the 1950–2000 period). However, model
applicationwouldbeall themoredifficult, asmeteorological stationsare
sparse and their data time-series are often incomplete. An alternative
would be the use of other satellite products like TRIMM or MeteoSat
data. The NDVI could also be replaced by a more complex soil adjusted
vegetation index (SAVI type). It has been shown that theGESAVI, a SAVI-
type vegetation index (Gilabert et al., 2002), is more correlated to LAI
than NDVI for these eucalypt plantations (le Maire et al., 2011). The
GESAVI could be calibrated locally to take into account differences in soil
reflectance. Note however that in theNDVI variables, we introduced the
minimum NDVI of the time-series (N5), which is a proxy of the soil
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NDVI, but this variable was not important in the RF models. Finally, the
greatest scope for further improvement of the precision of our
methodology could come from the use within a RF framework of
complementary sources of temporal satellite data, like radar data, (or
other indices usingother spectral bands) jointlywithMODIS time series,
in order to explain the remainingbiomass variability that is not captured
by reflectance variations.

4.4. Applicability of the method at large scales

As the present study encompassed a wide range of soil types and
climatic conditions, our statistical models present good potential for
extrapolation purposes, which could be confirmed by tests on otherfield
datasets. Even if the accuracy of these models is probably too low from
the perspective of forest managers to replace field inventories, such
models can answer large-scale questions about regional Eucalyptus
wood production and interannual variability. Wood volume can be
converted to wood carbon mass provided wood density and carbon
content are known.Wooddensity canbe roughly estimated as a function
of age (as in de Aguiar Ferreira and Stape, 2009; Marsden et al., 2010),
and carbon content can be considered to be approximately constant.
Practical estimations of wood biomass are therefore feasible at large and
even country-wide scales based on the models developed in this study,
at very low cost (all the satellite data used here are freely available)
compared to airborne or satellite radar acquisition. An improvement of
the unmixing algorithmwould be necessary to take into account smaller
and border stands that were discarded in the present study. Such
improvement could be achieved by further developing the use of multi-
date high resolution CBERS images. Their automatic segmentation and
classification could result in: i) a grouping of similar stands together
based on their homogeneity; ii) the segmentation of other land-use
classes needed for unmixing stands at plantation borders; and iii) the
detection of possible changes in stand limits or land use. Another
approach could be to use CBERS images directly in an unmixing-based
data fusion approach (Zurita-Milla et al., 2009).

In addition to its immediate applications for regional carbon
accounting or forest management, our large-scale biomass estimation
approach can be a useful scientific tool for research work aiming to
understand and simulate plantation biogeochemistry. Meteorological
and soil conditions interact in a complex way to explain the growth of a
forest stand. The use of a stand-scale process-based model that
simulates tree growth and water and nutrient cycles at the scale of the
stand, taking into accountmeteorological conditions and soil properties,
could be forced with NDVI time-series data to constrain LAI dynamics
and therefore improve biomass simulations (see le Maire et al., 2010).
Conversely, the use of our large-scale biomass estimates could constrain
process-based models in order to better simulate carbon fluxes
(Bellassen et al., 2011; le Maire et al., 2005).

Themethodology presented here for Eucalyptus plantations could be
transferred to other types of forests. The main constraints are that the
stands have to be large enough, even-aged and homogeneous, and
young enough for MODIS NDVI time-series to be available since the
planting date (or approximate date of regeneration). The methodology
could therefore be applied to other fast-growing forests like poplar,
pines, etc.

5. Conclusion

This study proposes a regression-model approach for the large-scale
estimation of forest plantation biomass, based uniquely on optical
satellite data and other freely accessible information. Contrasting with
the generally low efficiency of optical remote sensing for the retrieval of
forest biomass, we have shown that the use of continuous NDVI time
series starting at planting date gave precise and robust estimates of
Eucalyptus standwoodvolumeanddominantheight (accuracy of 15 and
8% of their average, respectively). The age of the plantation stands,
whichcould beobtained from theNDVI time-series themselves,was one
of the major variables explaining stand volume and height in these
Eucalyptus plantations. Additional important variables that significantly
improved model efficiency were the cumulative NDVI since planting
date or during focused periods, and local bioclimatic characteristics
whichwere obtained from aworld database. The resultingmodels form
a cost-effective and accurate method for the mapping of Eucalyptus
biomass at large scales and for the monitoring of its evolution, which is
of high interest for carbon accounting in the forestry sector.
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