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Executive Summary 
 
The Land Use Planning for Enhanced Resilience of Landscapes (LAUREL) program, led 
by the World Bank, supports landscape management in Mozambique through 
improved spatial data on land degradation and through the development of a 
modeling platform that can analyze and quantify the economic and ecological 
implications of future land use. 
 
The goal of the former is to develop a sound, consistent and locally relevant estimates 
of land degradation in Mozambique, following the latest guidance of international UN 
conventions using state-of-the-art earth observation technology.  To achieve these 
goals we developed an integrated methodology that identifies and quantifies the 
drivers of land productivity change and estimate land degradation state and trends. 
The methodology relies on two indicators that provide historical estimates of land 
degradation: a land use and land cover change (LULCC) analysis and a land 
productivity trend analysis (NDVI). These analyses were conducted at the national 
scale, over the 2000-2016 period, with spatial resolutions of 30m and 250m, 
respectively.  Finally, we collected and estimated other land degradation indicators 
(biodiversity, soil organic carbon, & soil erosion) from global and national datasets to 
populate additional baseline indicators. 
 
The NDVI trend analysis shows that a large proportion of the country (77%) is 
characterized by an overall stable trend, meaning there is no significant change in 
terms of vegetation productivity over the period.  Among the significant trends, 19% 
of the total area have negative NDVI Trends, with clear spatial patterns of 
decreasing trends in Inhambane, Zambezia and Nampula provinces.  On the other 
hand, only 3% and of the total area displayed increase trends, mainly observed along 
the Zambezia and Sabi rivers and in the Maputo, Niassa and Cabo Delgado provinces. 
 
In the final LULCC map for 2000, 2005, 2010 and 2016 we observed an overall land use 
pattern of 45.0% (35.8 Mha) of dry forest, 37.0% (29.3 Mha) of grassland and fallow, 
13.7% (10.8 Mha) of cropland 2.0% (1.6 Mha) of wetlands, 1.3% (1 Mha) of other 
categories (rocks, sands, or bare soils), 0.3% (271,000 ha) of Mangroves, and 0.1% 
(673.1 ha) of urban areas. These values are broadly in agreement with the National 
Land Use and Land Cover maps for 2016 currently being finalized by the GoM. The 
deforestation over the 2000-2016 period is estimated to have been 207,272 ha per 
year. 
 
The result is a nationally consistent database of land degradation and robust 
information on the underlying causes of degradation in Mozambique.  The land 
degradation assessement methods and results were presented and shared during the 
development process to national institutions (e.g., DINOTER, DINAB, FNDS/MRV Unit, 
IIAM, UEM). In addition, a training sesson on land degradation assessment was 
organised in 2018 at the University Eduardo Mondlane (UEM) with participants from 
national institutions (including DINOTER, DINAB, FNDS), projects or programs (e.g. 
BioFund, PNDT, Secosud), civil society (e.g. Micaia Fundation), researchers and 



 4 

students. Two papers were submitted in international peer-review journal to 
document the methodology and present the results. 
 
The Land Degradation spatial products presented in this report can provide useful 
information to accompany local interventions (Gilé National Reserve Conservation 
activities) or be part of larger programs such as REDD+ Zambesia, the National Land 
Degradation Neutrality Baseline or the Red List Critical Ecosystem Assessment.  
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Sumário executivo 
 
O programa LAUREL (Land Use Planning for Enhanced Resilience of Landscapes), 

liderado pelo Banco Mundial, apoia a gestão da paisagem em Moçambique através de 

dados espaciais melhorados sobre a degradação da terra e através do 

desenvolvimento de uma plataforma de modelação que pode analisar e quantificar as 

implicações económicas e ecológicas do uso futuro da terra. 

O objectivo da primeira é desenvolver uma estimativa sólida, consistente e localmente 

relevante da degradação da terra em Moçambique, seguindo a mais recente 

orientação das convenções internacionais da ONU, utilizando tecnologia de 

observação da terra de última geração.  Para alcançar estes objectivos, 

desenvolvemos uma metodologia integrada que identifica e quantifica os 

impulsionadores da mudança da produtividade da terra e estima o estado e 

tendências da degradação da terra. A metodologia baseia-se em dois indicadores que 

fornecem estimativas históricas da degradação da terra: uma análise do uso e 

cobertura da terra (LULCC) e uma análise das tendências de produtividade da terra 

(NDVI). Estas análises foram realizadas à escala nacional, ao longo do período 2000-

2016, com resoluções espaciais de 30m e 250m, respectivamente.  Finalmente, 

coletamos e estimamos outros indicadores de degradação do solo (biodiversidade, 

carbono orgânico do solo e erosão do solo) a partir de conjuntos de dados globais e 

nacionais para preencher indicadores de linha de base adicionais. 

A análise de tendências do IVDN mostra que uma grande proporção do país (77%) é 

caracterizada por uma tendência geral estável, o que significa que não há mudança 

significativa em termos de produtividade da vegetação durante o período.  Entre as 

tendências significativas, 19% da área total tem tendências NDVI negativas, com 

padrões espaciais claros de tendências decrescentes nas províncias de Inhambane, 

Zambézia e Nampula.  Por outro lado, apenas 3% e da área total apresentaram 

tendências de aumento, observadas principalmente ao longo dos rios Zambézia e Sabi 

e nas províncias de Maputo, Niassa e Cabo Delgado. 

No mapa LULCC final para 2000, 2005, 2010 e 2016 observámos um padrão geral de 

uso da terra de 45.0% (35.8 Mha) de floresta seca, 37.0% (29.3 Mha) de prados e 

pousios, 13.7% (10.8 Mha) de terras agrícolas 2.0% (1.6 Mha) de zonas húmidas, 1.3% 

(1 Mha) de outras categorias (rochas, areias, ou solos nus), 0.3% (271.000 ha) de 

mangais, e 0.1% (673.1 ha) de áreas urbanas. Estes valores estão amplamente de 

acordo com os mapas Nacionais de Uso e Cobertura do Solo para 2016 que estão 

actualmente a ser finalizados pelo GdM. Estima-se que o desmatamento no período 

2000-2016 tenha sido de 207.272 ha por ano. 

O resultado é uma base de dados nacional consistente da degradação da terra e 

informação robusta sobre as causas subjacentes da degradação em Moçambique.  Os 

métodos e resultados da avaliação da degradação da terra foram apresentados e 

partilhados durante o processo de desenvolvimento com as instituições nacionais (por 

exemplo, DINOTER, DINAB, FNDS/MRV Unit, IIAM, UEM). Além disso, uma sessão de 
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formação sobre a avaliação da degradação da terra foi organizada em 2018 na 

Universidade Eduardo Mondlane (UEM) com participantes de instituições nacionais 

(incluindo DINOTER, DINAB, FNDS), projectos ou programas (por exemplo, BioFund, 

PNDT, Secosud), sociedade civil (por exemplo, Micaia Fundation), investigadores e 

estudantes. Dois artigos foram submetidos em revistas internacionais de revisão por 

pares para documentar a metodologia e apresentar os resultados. 

Os produtos espaciais de Degradação da Terra apresentados neste relatório podem 

fornecer informações úteis para acompanhar intervenções locais (atividades de 

Conservação da Reserva Nacional Gilé) ou fazer parte de programas maiores como 

REDD+ Zambesia, a Linha de Base Nacional de Neutralidade da Degradação da Terra 

ou a Avaliação Crítica de Ecossistemas da Lista Vermelha. 
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1 INTRODUCTION 
 

1.1  Context 
 
In the last five years, a number of global and regional targets and commitments have 
been agreed to by national governments to halt and reverse land degradation and 
restore degraded land. These initiatives push countries to set up ambitious targets to 
reduce poverty, increase food security and nutrition, and reduce land degradation for 
the next decades.  
 
Despite these many initiatives, there is still a lack of clear and agreed quantified 
measurement of land degradation. In addition, many countries currently do not have 
the capacity to monitor and report on land degradation. 
 
The latest report of UNCCD on land degradation provides some methodological 
guidance on the choice of land degradation indicators, and how to measure and 
monitor (UNCCD, 2016). It suggests expressing land degradation as the status of three 
main indicators: (i) land cover and land cover change, (ii) land productivity, and (iii) 
carbon stocks above and below ground. These main indicators are justified due to the 
fact that they can be quantified in a spatially explicit manner using Earth observations 
and/or ancillary data from national to sub-national databases, and thus provide a 
practical approach to monitoring and reporting progress. Countries are invited to 
develop their one other secondary or user-defined land degradation indicators as well. 
 
Land degradation in Mozambique is very important. An assessment by the European 
Space Agency (ESA) found that ca. 42% of the land in Mozambique are degraded and 
ca. 19% of the land is now experiencing active degradation (Paganini et al., 2009). A 
recent report on deforestation in Mozambique estimated that more than 250 000 ha 
of natural forest were disapearing every year due to human activities (GoM, 2018). 
This active ƭŀƴŘ ŘŜƎǊŀŘŀǘƛƻƴ Ŏŀƴ ƧŜƻǇŀǊŘƛȊŜ ǘƘŜ ŎƻǳƴǘǊȅΩǎ ŀƎǊƛŎǳƭǘǳǊŀƭ ǇǊƻŘǳŎǘƛǾƛǘȅ ŀƴŘ 
economic development in the future, and call for actionable informations and 
anticipation.   
 
In 2017, the World Bank launched ŀ ǇǊƻƎǊŀƳ ŎŀƭƭŜŘ ά[ŀƴŘ ¦ǎŜ tƭŀƴƴƛƴƎ ŦƻǊ 9ƴƘŀƴŎŜŘ 
wŜǎƛƭƛŜƴŎŜ ƻŦ [ŀƴŘǎŎŀǇŜǎ ό[!¦w9[ύέ ǘƘŀǘ ŀƛƳs to support landscape management in 
Mozambique at national scale through two components: 1) Production of improved 
spatial data on land degradation; 2) Development of a land modelling platform for 
simulating, evaluating, and re-orienting as appropriate, land use and land use change 
ǇǊƻŎŜǎǎŜǎ όά[ŀƴŘ{Laέ ǇǊƻǘƻǘȅǇŜύΦ 
 
This report presents the work regarding the first component of this projet and 
carried out by Nitidae and CIRAD.  
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1.2  Objective  
 
The land degradation baseline component of LAUREL aimed to develop sound, 
consistent and up-to-date baseline and locally relevant estimates of Land condition in 
Mozambique. The ultimate goals were to 1) increase our knowledge regarding the 
location and drivers of the Land condition change (land use / land cover, and land 
productivity), and 2) produce base layers for the LandSIM prototype. 
 
We selected the 2000-2016 historical period due to the fact that it covers a significant 
historical time frame (16 years), and corresponds to the period that is expected to be 
simulated in the future with the LandSIM simulation platform (ranging from 10 to 20 
years in the future from 2017).  
 
The overall approach proposed herein is guided by three main principles: i) Cost-
effectiveness; ii) Possible replication by local counterpart; iii) Value to other national 
and sub-national initiatives. Therefore, we based our analysis on free global and 
national datasets, and open-source data processing tools that can be easily adopted 
by local counterparts.  
 

1.3  Linkages with LANDSIM and other national initiatives 
 
The land degradation component of LAUREL feeds the land simulation prototype 
(LANDSIM) through two main indicators: the Land Use and Land Cover Change 
(LULCC), and the Land Productivity Change (LPC) products (Figure 1).  
 
The land use and land cover change map is instrumental to providing LANDSIM with: 

 An initial land use/land cover map (2016), as a starting point to estimate future 
land use change; 

 Historical land use/land cover maps όнлллΧнлмсύ, to calibrate/validate various 
modules of LANDSIM. 
 

The Land Productivity Change product is overlaid with the LULC map in order to 
produce a Soil Degradation map. This latter is used in LandSIM as a base map for 
decision rules to account for reduced soil fertility impacting crop yields (moderately 
degraded soils), and abandonment of land due to infertile soils (severely degraded 
soils).   
 
Besides, these products are also valuable for on-going national initiatives that 
include the REDD+ national strategy, the Land Degradation Neutrality mechanism, 
and other initiatives (Biodiversity offset program, Restoration program, etc.) that 
require to have historical perspectives, and a fine-scale and up-to-date situation on 
the Land condition. However, LAUREL outputs are not suitable to define REDD+ 
baseline or any payement based mechanism.  
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Figure 1: Illustration of the linkages between Land Degradation and LANDSIM 

component of LAUREL. 

 
Part 2 provides a current state of the art on land degradation definition, approachs to 
measure and monitoring system and the one applied for this study. Part 3 describes 
the methodology used to identify and quantify the drivers of land productivity change 
and estimate land degradation state and trends. Part 4, presents the results regarding 
the location and drivers of the Land condition change observed. Finally, other land 
degradation indicators (soil organic carbon, soil erosion, & biodiversity,) from global 
and national datasets are presented in part 5. 
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2 BACKGROUND ON LAND DEGRADATION  
 
 
This work is based on the best-practice guidance on land degradation assessment 
(UNCCD, 2016), released at the beginning of LAUREL project. Both policy and science 
are currently challenged to have agreements, set up rules and methodology to 
ǉǳŀƴǘƛŦȅ ŀƴŘ ƳƻƴƛǘƻǊ ǘƘŜ ǇǊƻƎǊŜǎǎΦ ¢ƘŜ ƛƴǘŜǊƴŀǘƛƻƴŀƭ άǎŎƛŜƴŎŜ-ǇƻƭƛŎȅ ƛƴǘŜǊŦŀŎŜέ ƛǎ ƛƴ 
constant evolution and we saw new concepts and techniques emerged in the last two 
years. In this section, we present a short review of the current approaches for land 
degradation assessment, discuss the limits, and present the approach adopted in this 
study. 
 
Definitions of land degradation: 
 
According the UNCCDΥ άǘƘŜ Ǌeduction or loss of the biological or economic 
productivity and complexity of rainfed cropland, irrigated cropland, or range, pasture, 
forest and woodlands resulting from land uses or from a process or combination of 
processes, including processes arising from human activities and habitation patterns, 
such as soil erosion caused by wind and/or water, deterioration of the physical, 
chemical and biological or economic properties of soil, and long-term loss of natural 
vegetationέ (UNCCD, 2016). 

 
According the IPBESΥ άǘƘŜ Ƴŀƴȅ ƘǳƳŀƴ-caused processes that drive the decline or 
loss in biodiversity, ecosystem functions or ecosystem services in any terrestrial and 
ŀǎǎƻŎƛŀǘŜŘ ŀǉǳŀǘƛŎ ŜŎƻǎȅǎǘŜƳǎέ (IPBES, 2018). 
 

2.1  International context 
 
In the last five years, a number of global and regional targets and commitments have 
been agreed to by national governments to halt and reverse land degradation and 
restore degraded land. These include the Aichi Targets of the United Nations 
Convention on Biological Diversity (UNCBD), the REDD+ (Reducing Emissions from 
Deforestation and forest Degradation) mechanism of the United Nations Framework 
Convention on Climate Change (UNFCCC), the Land degradation neutrality (LDN) 
initiative of the United Nations Convention to Combat Desertification (UNCCD), the 
Bonn challenge, and the Sustainable Development Goals (SDG), in particular the SDG 
target 15.3 dedicated to the restoration of degraded land and soil. 
 
 

2.2  Land degradation versus Land condition 
 
It is clear that unsustainable human activities put land at risk and at the same time 
threaten the ecosystem services on which all humanity depends. There is enormous 
pressure on global land resources due to rising food demand, a global shift in dietary 
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habits, biofuel production, urbanization, and other competing demands (mining, and 
other extraction activities).  
 
Geist and Lambin (2004) analyzed more than 130 case studies about the underlying 
mechanisms of land degradation processes, and showed that: (1) land degradation is a 
complex process with biophysical and socio-economic drivers, and (2) there is no 
unique analytical framework for addressing land degradation at global scale. Since 
there remains a lack of clear and agreed definitions and a lack of quantified 
measurement, the differences in definitions, indicators, and even the perception of 
the land degradation may explain why the estimates on the extent and severity of 
land degradation vary significantly.  
 
According the UNCCD, the land degradation is mainly defined by the reduction of 
biological productivity, while for IPBES the land degradation is centered on the loss of 
biodiversity.  A simple and consensual definition of the land degradation is the decline 
or loss in ecosystem functions and services of a given territory that cannot fully 
recover unaided within decadal time scales. The time span is here very important to 
decouple changes on the long run from the impact of short-term fluctuations driven 
by seasonal pulse or single events (Cherlet et al., 2018). However, this definition also 
has application limits as it can happen that some ecosystem functions and services are 
negatively affected while others have been increased. The example given by Van der 
Esch et al. (2017) illustrates perfectly the difficulty in valuing and balancing the 
ecosystems trade-offs (Figure 2): transforming natural ecosystems into human-
oriented production ecosystems, for instance agriculture, often creates benefits to 
society but simultaneously can result in losses of biodiversity and other ecosystem 
services. 
 
There is even a large degree of uncertainty of in land degradation status. In the 3rd 
edition of the World Atlas of Desertification (WAD), indications of decreasing 
productivity can be observed globally, with up to 22 million km2 affected (i.e., 
ŀǇǇǊƻȄƛƳŀǘŜƭȅ нл ҈ ƻŦ ǘƘŜ 9ŀǊǘƘΩǎ ǾŜƎŜǘŀǘŜŘ ƭŀƴŘ ǎǳǊŦŀŎŜύ ǿƛǘƘ ǇŜǊǎƛǎǘŜƴǘ ŘŜŎƭƛƴƛƴƎ 
trends or stress on land productivity (Cherlet et al. 2018). If this trend continues, 95% 
ƻŦ ǘƘŜ 9ŀǊǘƘΩǎ ƭŀƴŘ ŀǊŜŀǎ ŎƻǳƭŘ ōŜŎƻƳŜ ŘŜƎǊŀŘŜŘ ōȅ нлрлΦ  !Ŏcording to IPBES (2018), 
ƭŜǎǎ ǘƘŀƴ ƻƴŜ ǉǳŀǊǘŜǊ ƻŦ ǘƘŜ 9ŀǊǘƘΩǎ ƭŀƴŘ ǎǳǊŦŀŎŜ ǊŜƳŀƛƴǎ ŦǊŜŜ ŦǊƻƳ ǎǳōǎǘŀƴǘƛŀƭ ƘǳƳŀƴ 
ƛƳǇŀŎǘǎ όŜǎǘŀōƭƛǎƘŜŘ ōǳǘ ƛƴŎƻƳǇƭŜǘŜύΣ ŀƴŘ ŎǳǊǊŜƴǘƭȅΣ ŘŜƎǊŀŘŀǘƛƻƴ ƻŦ ǘƘŜ 9ŀǊǘƘΩǎ ƭŀƴŘ 
surface through human activities is negatively impacting the well-being of at least 3.2 
billion people. However, Gibbs and Salmon (2015) compared the results of four 
approaches that have been used to assess degraded lands at the global scale: expert 
opinion, satellite observation, biophysical models, and taking inventory of abandoned 
agricultural lands. They showed that global estimates of total degraded area vary from 
less than 1 billion ha to over 6 billion ha (66% of the world land), with equally wide 
disagreement in their spatial distribution.   
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Figure 2 : Human transformation of natural ecosystems and trade-offs among 

ecosystem services and biodiversity. 

Because degradation is a question of point of view, it is more suitable to refer to Land 
condition, which is a neutral term, with no negative judgement contrary to the term 
άŘŜƎǊŀŘŀǘƛƻƴέΦ Lƴ ǘƘŜ ά{ŎŜƴŀǊƛƻǎ ŦƻǊ ǘƘŜ ¦b//5 Dƭƻōŀƭ [ŀƴŘ hǳǘƭƻƻƪέ ǊŜǇƻǊǘΣ Van der 
Esch et al. (2017) define Land condition as the potential of land to provide people with 
various types of services, without prioritizing any of them. They express it in 
quantifiable indicators, and assess how these indicators have changed over time and 
are expected to change up to 2050.  
 

2.3  The UNCCD approach 
 
The latest report of UNCDD on land degradation provides some methodological 
guidance on the choice of land degradation indicators and how to measure and 
monitor (UNCCD, 2016). It suggests expressing land degradation as the status of three 
main indicators: (i) land productivity dynamic, (ii) land cover and land cover change, 
and (iii) carbon stocks above/below ground (Figure 3). These indicators can be 
quantified in a spatially explicit manner using Earth observations and/or ancillary data 
from national to sub-national databases.  
 
Once calculated, the three indicators are combined into a measurement of the 
proportion of land that is degraded, which is required in order to fully implement the 
SDG Indicator 15.3.1. For that, the One Out, All Out principle is applied: If one of the 
indicators is negative (or stable when degraded in the baseline or previous monitoring 
year) for a particular land unit, then it would be considered as degraded. 
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Figure 3 : Illustration of the general approach to calculate the SDG indicator 15.3.1 

(adapted from UNCCD, 2016). 

 
Land productivity status and trends: For the purposes of reporting on SDG Indicator 
15.3.1, it is not necessary to quantify the magnitude of change in productivity in 
biomass units of Above Net Primary Production (ANPP), but only to know whether 
productivity is increasing (positive), decreasing (negative), or stable for the land unit at 
a particular time. The relative change in a unitless index, such as the NDVI, is often 
sufficient to determine land productivity trends.  
 
The recently proposed method for assessing land productivity trends was developed 
ōȅ ǘƘŜ 9ǳǊƻǇŜŀƴ /ƻƳƳƛǎǎƛƻƴΩǎ Wƻƛƴǘ wŜǎŜŀǊŎƘ /ŜƴǘǊŜ όWw/ύ ǘƻ ƳŜŀǎǳǊŜ ƭŀƴŘ 
degradation at global scales (Ivits & Cherlet, 2016). NDVI is interpreted in terms of 
three main metrics, calculated at the pixel scale (Figure 4):  

 Trajectory (or Trend), which represents the trajectory of productivity over 
time; 

 State, which compares the current productivity level in a given area to 
historical observations of productivity in that same area;  

 Performance, which measures local productivity relative to other similar 
vegetation types in similar land cover types and bioclimatic regions.  
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Figure 4 : Trajectory, Performance and State in Productivity. 

 
Pixels showing degradation are those with:  

 A significant negative trend in any combination of degradation metrics, or  

 A trend that is not significantly negative with  
o Degradation indicated in the productivity State analysis, and  
o Degradation indicated in the productivity Performance analysis  

 
Land cover changeΥ  ¢ƘŜ ƭŀƴŘ ǊŜŦŜǊǎ ǘƻ ǘƘŜ ƻōǎŜǊǾŜŘ ǇƘȅǎƛŎŀƭ ŎƻǾŜǊ ƻŦ ǘƘŜ 9ŀǊǘƘΩǎ 
surface, which describes the distribution of vegetation types, water bodies and 
human-made infrastructure. It also reflects the use of land resources (i.e., soil, water 
and biodiversity) for agriculture, forestry, human settlements and other purposes. To 
avoid ambiguity, one should always:  

 Adopt or formulate a land cover map legend with classes that are 
unambiguous, exhaustive and complete;  

 Generate a land cover class transition matrix that identifies land cover changes 
that could potentially be classified as degradation.  

 
Soil carbon change: quantity of organic carbon stored in on hectare. The change in 
time is related to land use or land cover changes. Depending of the LUCC, the soil can 
act as a sink or source of carbon. In land degradation assessment, the soil carbon is 
used as a proxy ƻŦ ǎƻƛƭ ŦŜǊǘƛƭƛǘȅ ŀƴŘ ƳƻǊŜ ōǊƻŀŘƭȅ ǊŜǇǊŜǎŜƴǘƛƴƎ άǎƻƛƭ ƘŜŀƭǘƘέ ǇǊƻǾƛŘƛƴƎ 
numerous ecosystem services to humans (food provision, erosion control, water 
retention, climate change mitigation, water purification, etc.) 
 
 

2.4  The WAD approach 
 
Considering the drivers and multiple factors underlying land degradation, the WAD 
ōǳƛƭŘǎ ƻƴ ŀ ǎȅǎǘŜƳŀǘƛŎ ŦǊŀƳŜǿƻǊƪ ǘƘŀǘ ǇǊƻǾƛŘŜǎ ŀ άŎƻƴǾŜǊƎŜƴŎŜ ƻŦ ŜǾƛŘŜƴŎŜέ 
regarding human-environment interactions: when multiple sources of evidence are in 
agreement, strong conclusions can be drawn even when none of the individual 
sources of evidence is significant on its own (Cherlet et al., 2018). Convergence maps 
are compiled by combining global datasets on key processes, using a reference period 
of 15-20 years. Combinations are made without prior assumptions in the absence of 
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exact knowledge of land change processes at variable locations. Patterns indicate 
areas where substantial stress on land resource is to be expected. The convergence 
approach is based on 13 consistent and geographically continuous datasets on socio-
economic and biophysical issues (Table 1). As land degradation in itself is a process, 
dynamic datasets are ideally to be used, but only a limited number currently provide 
consistent and harmonized global coverage. 
 

Table 1. Geographical datasets used in the WAD approach. 

Dynamic data layers State data layers 

 Population change (2000-2015) 

 Built-up area change (2000-2014) 

 Land biomass productivity dynamics 
(1999-2013) 

 Tree loss (2000-2014) 

 

 Population density in 2015 

 Gross national income per capita in 2015 

 Area equipped for irrigation (2005) 

 Nitrogen balance on landscape level (2000) 

 Livestock density (2006) 

 Fire occurrence (during period 2000 to 2013) 

 High water stress (2010) 

 Aridity (aridity index 1981 to 2000) 

 Climate and vegetation trend anomalies 
(1982 to 2011) 

 
Convergence of evidence is often undertaken in two steps:  

 A global land cover/use stratification is compiled for 2007-2010 and 
partitioned into classes representing a range of stakeholder interests, such as 
cropland or rangeland perspectives;  

 For each class, zonal or class statistics are calculated for each dataset or 
potential issue. The issues are reclassified as being above or below a 
statistically derived threshold, taking into account their expected effect in 
terms of land degradation (positive or negative). The resulting layers have 
values of 0 (no stress) and 1 (potential stress), and are summed together to 
provide the number of co-existing issues at any geographical position.  

 
The method is flexible and can be applied at all scales.  
 

2.5  The LAUREL approach 
 
A simple approach based on NDVI trend was preferred to an approach based on the 
distance from a reference condition of non-degradation (as the Performance and 
State indicators in the UNCCD approach), because it is very difficult to find non-
degraded conditions representative of each agro-climatic zone. Also, the trend 
approach was considered wiser than the άConvergence of evidenceέ or any approach 
based on the calculation of a environmental risk index that relies on a subjective 
weighing of the factors, and which result is very sensitive to the scale and accuracy of 
the input layers, especially at sub-national scale 
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²!5Ωǎ ƪŜȅ ƳŜǎǎŀƎŜ ƛǎ ǘƘŀǘ ƭŀƴŘ ŘŜƎǊŀŘŀǘƛƻƴ ƛǎ ŀ ƳǳƭǘƛŦŀŎŜǘŜŘ Ǝƭƻōŀƭ ǇƘŜƴƻƳŜƴƻƴ 
with distinct variations between regions and across key land cover/land use systems, 
and which cannot be captured by one or a limited set of indicators (UNCCD, 2017). In 
total agreement with this message, we based our analysis on a set of land and 
environmental indicators. We first expressed Land condition as the status and trend of 
selected primary indicators with a focus on land cover change, climate variability and 
land productivity trends, over a selected historical period that ranges from 2000 to 
2016. Then we combined these indicators with of other secondary environmental and 
socio-economic variables. 
 
Our approach is developed around a central indicator which is the land productivity 
trend estimated from NDVI time series over 15 years. This choice is dictated by 
different reasons: 1. NDVI is computed from measured physical quantities 
(electromagnetic radiation), and is not prone to any subjectivity or manipulation; 2. 
NDVI integrated over time is a good proxy of the above net primary production 
(ANPP); 3. The ANPP is a synthetic indicator of the Land condition prone to reflect 
changes in the environment: inter-annual changes such as rainfall amount, land 
cover/land use changes, loss of soil fertility, etc. However, a single value of NDVI does 
not permit to understand the drivers of the Land condition changes, and thus 
additional biophysical and socio-economic indicators are necessary to interpret these 
trends in terms of land degradation.  It is the reason why we develop a model that 
analyze these NDVI trends in terms of various biophysical and socio-economic drivers, 
and provide additional maps of drivers.   
 

The general Laurel approach comprises 4 main steps (data collection and preparation; 
processing indicators; ground control & validation; reporting and publication): 

 Data collection and pre-processing:  This step involved the identification and 
downloading global and national datasets. This raw dataset was analysed in 
term of quality, tested and pre-processed.   

 Data processing:  This step involved the processing of the land degradation 
indicators: land productivity trends; land use and cover changes; climate 
variability. A land degradation model was developped to further analyses the 
drivers of change. 

 Ground control: The land degradation maps were evaluated using ground 
observations/surveys conducted on hot-spots, either dark-spots (degradation) 
or bright-spots (improvement), in different agro-climatic regions. 

 Reporting and publication:  Various statistics were derived from these maps 
and interpreted. We further work on preparing these study in for scientific 
peer-review publicationsin partnership with local institutions (see abstract in 
annexe) 
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3 METHODOLOGY 
 
It is generally accepted that long-term variations in vegetation cover reflect land 
productivity. The frequency of vegetation observed over long periods is indeed a good 
indicator of ecological conditions or changing production conditions - soil fertility, 
water availability, and land use. It is therefore a measure of the response of 
ecosystems to the external impacts, whether they are induced by the human activity 
or natural variability, and provides information on land condition. The reduction or 
loss of productivity, biological and/or economic, is a common denominator of the 
various definitions of land degradation (Escadafal and Bégni, 2016). Land productivity 
is therefore an essential piece of information for degradation monitoring. 
 
Remote sensing data have been recognized for several decades as a powerful tool to 
map vegetation cover. In particular, the Normalized Difference Vegetation Index 
(NDVI) is an index of plant greenness or potential photosynthetic activity. Because 
NDVI has shown consistent correlation with vegetation biomass and dynamics in 
various ecosystems worldwide (e.g. Myneni et al. 199512), NDVI trends integrated 
over a time period can be used as a proxy to monitor changes in vegetation 
productivity. 
 
While remote sensing data, such as the NDVI temporal trends, can provide important 
insights in past and present states of land condition, it is not sufficient for a 
degradation diagnosis, nor a subsequent comprehensive assessment of exposure to 
future degradation (Weinzier et al., 201618). NDVI temporal trends must be analyzed 
in more detail in relation to available local data on observed land changes and their 
potential causes. Areas where the dynamics of vegetation productivity decline are 
most often areas of multiple stressors that threaten sustainable land use. These 
stressors may be natural, such as drought, or due to human action, such as 
deforestation or impoverishment of cropland due to overexploitation of the 
resources. These areas should receive additional attention in the diagnosis and 
mapping of ongoing land degradation. 
 
To develop the land degradation indicator we proposed a methodology based on two 
steps: 1. Data collection and pre-processing; 2. Data processing composed of three 
steps i) Land Use and Land Cover Change analysis; ii) NDVI time-series analysis, iii) 
Analysis of the climate and human drivers of NDVI trends. The detailed methodology 
is presented in Figure 5. The analysis was conducted at the national scale, over the 
2000-2016 period, with a spatial resolution between 30 m and 250 m. 
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Figure 5 : The general Land degradation baseline workflow 

 

3.1.  Data collection and pre-processing 

3.1.1  Modis NDVI times series 
 
To analyze the NDVI trends as a proxy for vegetation productivity change, we used the  
16-day MODIS NDVI product (MOD13Q1 Collection 6) available at 250 m spatial 
resolution (Didan et al., 2015). MODIS products were selected because they provide a 
regular and long term record of vegetation conditions that can be used to detect 
change and analyze dynamics, and are considered as the most accuracte NDVI record 
available (Higginbottom and Symeonakis, 2014). MODIS NDVI time series were 
downloaded ǳǎƛƴƎ ǘƘŜ b!{!Ω{ !ǇǇƭƛŎŀǘƛƻƴ ŦƻǊ 9ȄǘǊŀŎǘƛƻƴ ŀƴŘ 9ȄǇƭƻǊƛƴƎ !ƴŀƭȅǎƛǎ wŜŀŘȅ 
Samples (AppEEARS). The images time series cover the 2001-2016 period and the 
entire country. The MODIS image were corrected for molecular scattering, ozone 
absorption and aerosol (Didan et al., 2015). However, residual noise may persist and 
disturb the NDVI signal. To reduce this noise, the image time series was pre-processed 
using a Savitzky-Golay filter (polynomial 3 and windows 4) in order to smooth the data 
outliers without distorting the signal tendency (Chen et al., 2004). These parameters 
were iteratively adjusted to minimize the smoothing impact on observations that are 
known to be accurate, while also sufficiently smoothing outlier values responding to 
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factors other than productivity changes. Then, for each pixel, the annual integrated 
NDVI was calculated by summing the bi-monthly NDVI values over the year.  
 

3.1.2  Rainfall data 

 
Because in Mozambique the rain gauge network is sparse, with few gaps in the 
temporal records (Toté et al., 2015), we used rainfall estimation from satellite 
imagery. Rainfall data were obtained from the Climate Hazards Group InfraRed 
Precipitation with Station data (CHIRPS) rainfall estimates (Funk et al., 2015). After 
several tests and comparison, CHIRPS products were chosen because they are 
considered among the most accurate global gridded precipitation products (Beck et 
al., 2017; Burrell et al., 2018). CHIRPS is a high resolution (0.05°) monthly precipitation 
dataset, starting in 1981 to near-present, which incorporates satellite imagery with in-
situ station data to create gridded rainfall time series (Funk et al., 2015). CHIRPS data 
were downloaded from 2001 to 2016 ǳǎƛƴƎ ǘƘŜ άƘŜŀǾȅwŀƛƴέ w ǇŀŎƪŀƎŜ, and 
cumulated over the year. The data were resampled using the neighbor resampling 
method at 250 m to allow the comparison with MODIS NDVI data.  
 

3.1.3  Air temperature data 
 
Air temperature data were included is the analysis because temperature is an 
important factor of vegetation growth (Churkina and Running, 1998), that could 
explain a part of the vegetation productivity change (Burrell et al., 2019). Temperature 
data used were the Climate Research Unit Time-series v. 4.01 (CRU TS 4.03) dataset, a 
global monthly gridded time-series dataset, that covers the 1901-2018 period, and all 
land areas at 0.5° resolution (Harris et al., 2014). CRU data are based on weather 
stations measurements. Average maximum temperature was calculated per year for 
the 2001-2016 period and were resampled using the neighbor resampling method to 
the MODIS NDVI data spatial resolution of 250 m. 
 

3.1.4  Landsat data 
 
The land use and land cover change analysis relies on Landsat imagery as it is the only 
consistent source of high resolution satellite data available for the period of interest. 
Our objective was to produce annual (or biannual) cloud-free Landsat composite in 
order to perform visual observations on land cover changes, and run a supervised 
classification (see data processing). We used and adapted a Google Earth Engine script 
that enabled us to 1. access to the full Landsat archive; 2. select suitable images 
according to the acquisition period; 3. run pre-processing steps including cloud and 
shadow removal; 4. calculate a cloud-free composite image for the four reference 
dates. After several tests, we chose images acquired during the transition and dry 
seasons (April to November) and for 4 time periods (2000/2001, 2005/2006, 
2010/2011, 2015/2016). Composite images were produced by calculating the median 
values of reflectance through the two years time series. The final pre-processed 
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dataset is composed of 4 Landsat and cloud free composite available over the entire 
country at 30 m resolution. 
 

3.1.5  Other geospatial data  

 
In order to perform the statistical analysis of the drivers, we further collected and 
derived potential explanatory variables based on a literature analysis regarding the 
main drivers of vegetation productivity change, and the availability of data at national 
scale. The data were grouped in 5 categories (climatic, natural constraints, 
accessibility, demography, land use, and land use management) and are presented in 
Table 2. 
 

Table 2. List of the geospatial data used for the drivers analysis. 

Type Variables name Description Data source Spatial 
Résolution 

Climatic 
 Rainfall Mean annual rainfall (mm/year) WorlClim 1 km 

Annual rainfall trends TRMM3B43 25 km 
Temperature Mean annual temperature (°C) WorldClim  1 km 

Naturals constraints 
 Altitude Altitude (m) SRTM  30 m 

Soil Soil type FAO  vector 
 Soil organic 

carbone 
Soil organic carbon  stock (tC/ha) SoilGrid 250 m 

 Soil erosion Erosion hazard (t.ha/yr) LAUREL data 250 m 

Accessibility and socio-economic factors 
 Distance city Euclidean distance from city (m) INE vector 

Distance villages Euclidean distance from villages (m) INE vector 
Distance road Euclidean distance from roads (m) OSM, WB vector 
Distance rivers Euclidean distance from rivers (m) FAO, WB vector 
Distance edge Euclidean distance from forest edge (ms) LAUREL data vector 

Demography and population factors 
  Population density in 2015 Worldpop - 

AfriPop 
100 m 

Population density difference between 2010 
and 2015 

Worldpop - 
AfriPop 

100 m 

Land use and land management 
 Land cover Land cover in 2000 LAUREL data 30 m 

Cropland loss Cropland loss between 2001 and 2015 CCI ς ESA 300 m 
Grassland loss Grassland loss between 2001 and 2015 CCI ς ESA 300 m 
Urbanization Urban expansion between 2001 and 2015 CCI ς ESA 300 m 
Irrigated area Irrigated area NASA 1 km 
Livestock density Cattle and goats density (head per km²) GLW v2.0 5 km 
Fire Fire frequency between 2001 and 2016 MODIS burnt areas 500 m 
Protected areas Protected area categories WB vector 
Deforestation % deforestation pixel MODIS ς 2000 - 2016 Laurel data 250 m 
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3.1.6   Ground observations  
 
Ground surveys were conducted in order to validate patterns of land use and 
vegetation changes, and understand the underlying drivers. They were conducted in 
four provinces (Gaza, Inhambane, Manica, and Zambezia) from April and November 
2018. Observations recorded included current and past land use and land cover, 
vegetation characteristics, natural external pressures, impact of human activities 
όŎǳƭǘƛǾŀǘƛƻƴΣ ƎǊŀȊƛƴƎΣ ŦƛǊŜΣ ƭƻƎƎƛƴƎΧύΦ These informations were complemented by visual 
interpretation of Very High Resolution Satellite images. 
 
The field visits were conducted in 4 areas, with constrated landscape features and 
dynamics in order to capture different land use and vegetation dynamics (Figure 6): 
1) The Gilé National Reserve (GNR), located in Zambezia Province, composed mainly 

of Miombo Forest. Currently, the periphery and the buffer zone of the RNG are 
subject to strong and growing anthropogenic pressures, due mainly to a significant 
demographic growth, and to slash-and-burn agriculture practices; 

2) The mountain region of Gurué and the Mount Namuli, located in the northwest 
of the Zambezia province. The valley is dominated mainly by commercial tea and 
eucalyptus plantations, and the Mƻǳƴǘ bŀƳǳƭƛΩǎ ǎƭƻǇŜǎ ŀǊŜ ŎƻǾŜǊŜŘ ōȅ ŀ ƳƻǎŀƛŎ ƻŦ 
forests, grasslands, and agricultural land; 

3) The Chimanimani National Reserve in Manica Province, a mountainous region. 
The mountains are interspaced with several rocky or grassland plateau as well as 
deep gorges with evergreen forests; 

4) The semi-arid lowland region of Gaza and Inhambane provinces in the southern 
part of the country dominated by cropland and grassland.  

 

 

Figure 6. Location of the 2018 field visits (red squares). 
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The field trips consisted in visiting the άredέ and άgreenέ areas obtained in the LPC 
maps, observing the landscape and collecting information about the past and current 
LULC or pressure (natural or not), in order to identify the main factors of the observed 
vegetation changes. Illustration maps and ground photos for two study areas (Gilé and 
Gurué) are presented in Figure 7. 
 

 

Figure 7 : Areas of significant vegetation productivity change in Gurué and Gilé provinces. The red and 

green large pixels indicate areas of decreasing and increasing land productivity, respectively, as 

assessed using MODIS time series. The numbered ground photos illustrate the LULC of green and red 

areas samples: 

 - Gurué Région: picture 1: Urban densification in Gurué city (red); picture 2: Old tea plantation still 

under exploitation, but degraded (red); picture 3: Settlement on an old tea plantation (red); picture 

picture 4: Post-agriculture forest regeneration (green); picture 5: Eucalyptus plantation (green). 

- Gilé Region: picture 6: Forest regeneration, 15-20 years old, after slash and burn agriculture and 

human settlement (green); picture 7: Recent deforestation (red). 
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3.2  Data processing 

3.2.1  LULCC Analysis 
 

Training plots delineation 

The process of collecting training polygons for a successful model calibration has been 
fully described in a previous study (Grinand et al, 2013; Rakotomalala et al, 2015). 
Polygons that represent land uses (LU) in 2016, as well as land cover changes (LCC) 
between 2000-2005, 2005-2010 and 2010-2016 periods, were delineated. Landsat 
composites were loaded into a GIS (QGis) and, by iteratively switching on and off the 
images, land cover changes were visually interpreted and delineated. We used Google 
Earth very-high resolution images (Open Layer plugin and GEarthView in Google Earth) 
ǘƻ ŀǎŎŜǊǘŀƛƴ ƻǊ άƎǊƻǳƴŘ ŎƻƴǘǊƻƭέ ǘƘŜ ƭŀƴŘ ǳǎŜǎ ŀƴŘ ƎŜǘ ƘƛƎƘŜǊ ŘŜƎǊŜŜǎ ƻŦ ŎƻƴŦƛŘŜƴŎŜ ƛƴ 
the land categories. Multiple plots were delineated in clusters over the landscape to 
better capture the boundaries between two categories throughout the landscape. This 
work was performed by two operators. Tasks were organized by Province. Finally, 
22 4000 plots were collected (Table 3). 
 
The typology used is the higher level (level 1) of the national land cover classification 
system (NLCS) that corresponds to the IPCC land representation categories, to say, the 
6 land cover categories: forest, cropland, grassland, wetland, other land (rocks, etc.), 
settlements. We visually delineated training plots (Region of Interest-ROI) over both 
Landsat mosaic and Google Earth Images to ascertain land use definition especially 
forest definition (>30% of canopy cover). We further discriminated mangroves from 
the other types of forest (mainly open semi-deciduous forest, Miombo forest) since 
those forests have a very specific spectral signature. Besides, we identified and used 3 
land cover change categories: deforestation between 2000 and 2005, 2005 and 2010, 
and 2010 and 2016.  
 

Table 3. Number, mean and total area of the training plots used for the classification, 

by province. 

Province 

Number of training 
plots 

Average size of the 
training plot (hectares) 

Total area of the 
training plots 

(hectares) 

Cabo Delgado 2 369 3.64 8 621 

Gaza 1 742 3.02 5 254 

Inhambane 1 748 2.94 5 140 

Manica 2 807 3.41 9 558 

Maputo 1 590 3.81 6 060 

Nampula 2 625 2.42 6 353 

Niassa 2 493 4.89 12 192 

Sofala 2 560 3.17 8 124 

Tete 1 647 3.84 6 330 

Zambezia 2 819 3.33 9 384 

MOZAMBIQUE 22 400 3.45 77 015 
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Processing and post-processing 
The supervised classification was performed using the Random Forest (RF) machine 
learning classifier in the R software (Breiman, 2001). As oftenly used in the litterature, 
we used the default parameters values. Random Forest produces a bootstrap of small 
decision trees, the final predicted value is obtained by using a majority vote of every 
single tree predictions. This non-linear algorithm is recognized to prevent for over-
fitting of the model.  
 
The model was built using the training plots database (shapefile) intersected with the 
Landsat composite time series (4 dates with the 9 Landsat bands). A 30 m Digital 
Elevation Model (DEM) from SRTM was added to the variables stack, in order to 
account for biophysical and environmental constraints (e.g. mangrove in the littoral). 
The iterative process described above was performed by province in order to ease the 
training plots delineation and production of interim maps process. The final RF model 
was calibrated using the full dataset (2.4 billions of pixels with 37 variables) over the 
entire country in order to account for the full signature of the class and avoid 
boundary effects. 
 
Once calibrated, we analysed the confusion matrix provided by the algorithm (Out-of-
the-bag errors) to evaluate the omission and commission errors. The model was then 
applied to the full landsat times series (4 dates) composite stack to produce the raw 
LULCC map. 
 
¢ƘŜ Ǌŀǿ [¦[// ƳŀǇ ǿŀǎ ŦǳǊǘƘŜǊ ǇǊƻŎŜǎǎŜŘΦ ¢ƘŜǎŜ άǇƻǎǘ-ǇǊƻŎŜǎǎƛƴƎέ ǎǘŜǇǎ ŀǊŜ 
described below: 

 Reclassification of LULCC to get the LULC in 2000; 

 Sieving of all categories at 1 ha in LULC 2000; 

 Sieving of deforestation categories at 0.36 ha in order to account for the 1 
pixel geometric accuracy and remove the noise, inherent to such process; 

 Intersection of LULC 2000 with deforestation categories; 

 Extraction of individual dates: LULC 2000, LULC 2005, LULC 2010, LULC 2016. 
 
 

3.2.2  NDVI time series analysis 

 
The vegetation productivity changes were analyzed using a statistical trend analysis 
based on an Ordinary-Least Square (OLS) regression over a 16-year period (2001-
2016), applied to each pixel of the annual NDVI time series. OLS is applied to quantify 
change in the dependent variable (NDVI value) against an independent variable (time). 
The significance of the slope coefficient was determined using the p-value at a 95% 
confidence level (p-value<0.05). Three classes of significancy (0.01<value<0.05, 
0.001<p-value<0.01, p-value<0.001) were defined. The direction of change (increase 
or decrease in productivity) was determined using the sign of the slope coefficient. 
Each pixel was then classified regarding these two parameters. Finally, the resulting 
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map has seven classes: three classes for significant increase, three classes for 
significant decrease, and one class for non significant trend at a 95% confidence level 
(p-value>0.05). 
 

3.2.3  Mapping drivers of Land Productivity Changes 

 
To understand the main drivers of the land productivity change, a two-step framework 
was applied: first the climate effect was extracted using rainfall and temperature 
datasets, and then the human activities effects were extracted using LULCC dataset 
and ground knowledge. 
 

Climate  

This step aims to separate the vegetation changes induced by the rainfall or 
temperature trends, from the vegetation changes due to other factors, following the 
methodology proposed by Leroux et al. (2017). In order to separate the relative role of 
rainfall/temperature changes or other causes, this study proposed a classification 
scheme based on the NDVI-climate data correlation and the NDVI residuals trends 
analysis over the 2001-2016 period. 
 
NDVI-climate data correlation: The Pearson correlation coefficient between annual 
cumulated NDVI value and, annual cumulated Rainfall value and annual average 
maximum temperature value, was calculated for each pixel. The correlation was 
considered statistically significant at the 95% level (p-value<0.05), corresponding to 
r = 0.4973 or r = -0.4973, according to the Bravais-Pearson table. Pixels with a 
significant correlation are largely characterized by a negative correlation between 
temperature and NDVI, and a positive correlation between NDVI and rainfall. For the 
next step, we only considered the positive NDVI-rainfall and negative NDVI-
temperature correlations. 
 
NDVI residuals trends analysis: To distinguish climate-induced changes from the 
effects induced by other factors, such as the human factors, the climatic component is 
removed from the NDVI trends, using a robust and widely accepted method currently 
known as RESTREND (Evans and Geerken, 2004; Wessels et al., 2007). This procedure 
consists of: 1. Fitting a linear model between the annual cumulated NDVI value and 
the annual cumulated rainfall value or annual average maximum temperature per 
pixel; 2. Performing a new trend analysis on the model residuals. Trends in the 
residuals could be interpreted as the part of the vegetation productivity that is not 
explained by the rainfall or temperature inter-annual variability.  
 
Mapping rainfall effect: In order to assign relative effect of rainfall or temperature and 
other factors to NDVI change, we used a classification scheme close to the one 
proposed by Leroux et al. (2017). This classification scheme is based on 6 decision 
rules depending on the slope of the NDVI trend and its significance (p-value < 0.05), 
the coefficient of correlation between NDVI and Rainfall/temperature, the slope and 
the significance of the Residuals trends (p-value < 0.05) (Table 4). As a result, pixels 
are classed into 3 classes of change: 1. Rainfall/Temperature change only; 2. 
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Rainfall/temperature change and other factors; 3. Other factors. According to Leroux 
et al. (2017), if the correlation between NDVI and rainfall/temperature is significant, 
and if the sign of the slopes of the NDVI and NDVI residual trends are identical, the 
vegetation productivity changes in a larger proportion than if it was due to the climate 
alone. On the contrary, if the sign of the slopes of the NDVI and NDVI residual trends 
are opposite, the vegetation productivity change is explained mainly by the climate. If 
there is no correlation between NDVI and rainfall/temperature, the vegetation 
productivity is driven by other factors than climate. This analysis is carried out 
separately for rainfall and temperature data, and results into 6 classes of change: 1. 
Rainfall change only; 2. Temperature change only; 3. Rainfall change and other 
factors; 4. Temperature change and other factors; 5. Rainfall and temperature change 
and other factors; 6. Other factors. 
 
Table 4. /ƭŀǎǎƛŬŎŀǘƛƻƴ ǎŎƘŜƳŜ ǘƻ ŀǎǎƛƎƴ ǊŜƭŀǘƛǾŜ ŜŦŦŜŎǘ ƻŦ ǊŀƛƴŦŀƭƭ ƻǊ ǘŜƳǇŜǊŀǘǳǊŜ ŀƴŘ 
other factors to NDVI changes. 

NDVI 
trends (p-
value < 
0.05) 

Coefficient 
of 
correlation 
NDVI-Rain  

Coefficient of 
correlation 
NDVI-
temperature 

Residuals trends 
(p-value < 0.05)* 

Change Factor 

Slope >0 r > 0.4973 r< -0.4973 Slope >0 Rainfall/temperature change + other 

r > 0.4973 r< -0.4973 Slope < 0 or n.s Rainfall/temperature change 

r < 0.4973 r> -0.4973   Other 

Slope <0 r > 0.4973 r< -0.4973 Slope <0 Rainfall/temperature change + other 

r > 0.4973 r< -0.4973 Slope > 0 or n.s. Rainfall/temperature change 

r < 0.4973 r> -0.4973   Other 

*n.s : not significant 

 

Human activities  

¢Ƙƛǎ ǎǘŜǇ ŀƛƳǎ ǘƻ ŘƛŦŦŜǊŜƴǘƛŀǘŜ ǘƘŜ άƻǘƘŜǊ ŦŀŎǘƻǊǎ ƻŦ ŎƘŀƴƎŜέ ŎŀǘŜƎƻǊȅ ŦǊƻƳ ǘƘŜ 
previous analysis (with no correlation between NDVI and climate data), using the 
LULCC map to represent the potential factors of change due to human activities. A 
classification scheme based on decision rules depending on the slope of the NDVI 
trend and its significance (p-value < 0.05), and the LULCC category was proposed 
(Table 5). Each potential change factor represents the main potential factor for 
productivity change related to each LULC category. These potential factors come from 
expert opinion, review of literature and in-situ observation όǎŜŜ ǎŜŎǘƛƻƴ о άDǊƻǳƴŘ 
ŎƻƴǘǊƻƭέύ regarding the current and past LULC, vegetation characteristics, natural and 
anthropic pressures.  
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Table 5: Classification scheme for human induced factors. 

NDVI 
trends 

LULCC Change Factor 

Slope >0 
Positive 

Forest 2016 Native Forest Growth or Plantations 

Cropland 2000 ς 2016 Agricultural Productivity Increase or Fallow regrowth 

Grassland 2000 ς 2016 Grassland Productivity increase 

Mangrove 2000 - 2016 Mangrove Productivity increase or Regrowth 

Urban area 2016 Urban greening 

Other land use  Others (undifferentiated multiple factors) 

Slope <0 
Negative 

Forest 2000 & defor.> 10% Deforestation 

Forest 2000 ς 2016 Forest degradation 

Cropland 2000 ς 2016 Agricultural Productivity Decline 

Grassland 2000 ς 2016 Grassland Productivity Decline 

Mangrove 2000 - 2016 Mangrove degradation or deforestation 

Urban area 2016 Urban expansion or densification 

Other land use  Others (undifferentiated multiple factors) 

 

3.2.4   Statistical analysis using Random Forest 
 
To complement the above analysis of the underlying factors of NDVI trends, we tested 
a multivariate and stastiscal analysis. Random forest algorithm was used to 
statistically classify and identify the main important factors at national scale. To 
accomplish this, the variables presented in the Table 2 were used as explanatory 
variables in RF, while NDVI trend classes (negative, positive or not significant) were 
treated as the variables to be explained.  
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4 RESULTS 

 

4.1   LU&LCC map and statistics 
 
The final LULCC map for 2000-2016 is presented in Figure 8. We observed an overall 
pattern of 45% (35.8 Mha) of dry forest, 0.3% (0.271 Mha) of mangroves, 37% 
(29.3 Mha) of grassland and fallow, 13.7% (10.8 Mha) of cropland, 2% (1.63 Mha) of 
wetland, 1.3% (1 Mha) of other categories (rocks, sands, bare soils) and 0.1% (0.67 
Mha) of urban areas (see  
 
Table 6 and Table 7 for results per province). These values are broadly in agreement 
with the 2016 national Land Use and Land Cover map currently being finalized.  
 
The annual deforestation for the 2000-2016 period was 207 272 ha per year (Table 8). 
This value is slightly lower than the Forest Reference Emissions Level (FREL) values for 
the 2000-2016 period (269 000 +/- 12 000 ha yr-1), but could be considered 
conservative.  
 

 

Figure 8 : Final Mozambique LULCC 2000-2016 map, with zooms in Pebane (top) and 

Chimoio (bottom) regions. 

 

 

Chimoio region 

Pebane region 
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Table 6: Mozambique LULC area statistics for 2016.  

Province Forest Grassland Cropland Other land Wetland 
Urban 
areas 

Cabo Delgado 2 926 934 3 933 151 739 500 70 912 40 617 11 193 

Gaza 2 845 284 3 574 690 931 528 142 037 108 007 2 807 

Inhambane 2 777 743 3 271 923 569 857 92 914 164 153 1 703 

Manica 2 499 358 2 912 514 804 033 38 179 19 291 3 004 

Maputo 467 161 1 557 183 248 558 13 738 49 814 27 380 

Nampula 3 458 305 1 444 821 2 542 157 259 790 42 587 10 735 

Niassa 7 201 799 3 584 979 1 077 650 277 940 702 486 1 858 

Sofala 2 996 370 2 554 350 1 012 334 96 888 74 353 3 743 

Tete 3 884 902 3 567 188 2 382 564 27 986 288 700 2 417 

Zambezia 5 368 239 1 397 831 3 083 217 190 894 135 814 4 711 

MOZAMBIQUE 34 426 095 27 798 632 13 391 398 1 211 280 1 625 823 69 550 

 

Table 7: Mozambique area statistics of the forest class calculated from the LULCC 

2000-2016 map (ha).  

  All forest type (except mangrove) Mangrove 

Province 2000 2005 2010 2016 2016 

Cabo Delgado 3 752 290 3 651 826 3 554 292 3 494 461 27 745 

Gaza 2 998 345 2 934 797 2 887 113 2 862 194 454 

Inhambane 3 318 406 3 229 709 3 137 710 3 044 096 15 331 

Manica 3 561 874 3 445 190 3 281 111 3 141 596 0 

Maputo City 2 609 2 552 2 537 2 521 515 

Maputo Prov. 708 742 703 350 696 640 680 465 3 692 

Nampula 3 127 457 2 960 164 2 846 760 2 625 383 42 222 

Niassa 8 149 633 8 020 012 7 875 534 7 711 423 0 

Sofala 3 150 127 3 108 333 3 027 820 2 976 344 59 237 

Tete 3 622 774 3 528 640 3 389 847 3 275 914 0 

Zambezia 6 567 546 6 381 863 6 200 247 6 036 267 122 040 

MOZAMBIQUE 38 959 804 37 966 435 36 899 611 35 850 663 271 235 

 

Table 8: Mozambique area statistics for deforestation calculated from the LULCC 2000-

2016 map (ha yr-1).  

   Deforestation (Forest loss in hectares/year) 

Province 2000-2005 2005-2010 2010-2016 2000-2016 

Cabo Delgado 20 093 19 507 11 966 17 189 

Gaza 12 710 9 537 4 984 9 077 

Inhambane 17 739 18 400 18 723 18 287 

Manica 23 337 32 816 27 903 28 019 

Maputo City 11 3 3 6 

Maputo Prov. 1 078 1 342 3 235 1 885 

Nampula 33 459 22 681 44 275 33 472 
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Niassa 25 924 28 896 32 822 29 214 

Sofala 8 359 16 103 10 295 11 586 

Tete 18 827 27 759 22 787 23 124 

Zambezia 37 137 36 323 32 796 35 419 

MOZAMBIQUE 198 674 213 365 209 789 207 276 

 

4.2  NDVI trends between 2001 and 2016 
 
The annual vegetation productivity trends statistics for the 2001-2016 period at 
national level are presented in Figure 9 and Table 9. The NDVI trend analysis shows 
that a large proportion of the country (77%) is characterized by an overall stable 
trend, meaning there is no significant land productivity change over the period. 
Among the significant trends, 19% of the total area display negative NDVI trends, 
with clear spatial patterns of decreasing trends in Inhambane, Zambezia and 
Nampula provinces. On the other hand, only 3% of the total area display positive 
NDVI trends, mainly observed along the Zambezia and Sabi rivers, and in the Maputo, 
Niassa and Cabo Delgado provinces.  
 
 

 

Figure 9. Annual land productivity trend maps of Mozambique calculated for the 2001-

2016 period: a) NDVI trend without climate correction, b) NDVI trend with rainfall 

correction, c) NDVI trend with temperature correction. 

 








































