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Recent concerns about global warming have resulted in more concerted studies on quantification and
modeling of carbon (C) storage in different ecosystems. The aim of this study was to assess and map the
carbon stocks in above (ABG), below-ground (BLG) biomass and soil organic carbon contained in the
30 centimeter top-layer (SOC) in coppices of eucalyptus plantations in the central highlands of Madagascar in
an area of 1590 ha. Relationships between C stock and various biophysical (stool or shoot stockings and ages,
circumferences) and spatial (elevation, slope, and soil type) factors that may affect C storage within each pool
were investigated. Three different modeling techniques were tested and compared for various factor sets: (i)
simple linear regression (SLM), (ii) multiple linear (MLM) models and, (iii) boosted regression tree (BRT)
models. Weights of the factors in the respective model were analyzed for the three pool-specific models that
produced the highest accuracy measurement. A regional spatial prediction of carbon stocks was performed
using spatial layers derived from a digital elevation model, remote sensing imagery and expert knowledge.
Results showed that BRT had the best predictive capacity for C stocks compared with the linear regression
models. Elevation and slope were found to be the most relevant predictors for modeling C stock in each pool,
and mainly for the SOC. A factor representing circumferences of stools and their stocking (stools·ha−1)
largely influenced BLG. Shoot circumference at breast height and shoot age were the best factors for ABG
fitting. Accuracy assessment carried out using coefficient of determination (R2) and ratio of standard deviation
to prediction error (RPD) showed satisfactory results, with 0.74 and 1.95 for AGB, 0.85 and 2.59 for BLG, and
0.61 and 1.6 for SOC respectively. Application of the best fitted models with spatial explanatory factors
allowed to map and estimate C contained within each pool : 32±13 Gg C for ABG, 67±15 Gg C for BLG and,
139±36 Gg C for SOC (1 Gg=109 g). A total of 238±40 Gg C was obtained for the entire study area by
combining the three C maps. Despite their relatively low predictive quality, models and C maps produced
herein provided relevant reference values of C storage under plantation ecosystems inMadagascar. This study
contributed to the reducing of uncertainty related to C monitoring and baseline definition in managed
terrestrial ecosystem.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Terrestrial ecosystems, as potential sinks for atmospheric CO2,
have received considerable attention due to the Kyoto Protocol to the
United Nation Framework Convention on Climate Change (UNFCCC).
At global scale, carbon (C) stocks are important either in biomass

(near 650 Gt C) or in the top first meter of soils (1500 to 2000 Gt C)
compared with the atmospheric CO2 stock (750 Gt C) (IPCC, 2007;
Robert and Saugier, 2003; Malhi et al., 1999). Changes in land uses
may causes important variation in carbon stocks and quality which
has in turn consequences on both CO2 emissions to the atmosphere
and C sequestration potential (Fearnside, 2001; Post et al., 2001; Post
and Known, 2002; Guo and Gifford, 2002; Houghton and Goodale,
2004). UNFCCC requires reporting on a regular basis and in a
transparent manner of C forest sinks. Tropical ecosystems represent
a substantial share of the global C pools, and this needs particular
attention to remedy the lack of accurate C accounting. Numerous
studies at scales ranging from global to local (Batjes, 1996, Eswaran
et al., 1993), aimed in quantifying organic C contained in natural pools
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of the terrestrial ecosystems including the living biomass above (ABG)
and below-ground (BLG), the litter (L) and the soil organic matter
(SOC) (IPCC, 2003; IPCC, 2006).

ABG carbon stocks have received much attention for years as this
pool is visible and easily quantified either by direct ground
observations such as the establishment of field allometric equations,
or by remote sensing and derived products such as vegetation index
maps. In comparison, studies on BLG and soil pools are scarce even if
they are required for complete C storage estimation. Few works
focused on the root system due to (i) tedious and time-consuming
labor to measure this biomass pool and (ii) the lack of adequate
method to study its dynamics and functions (Santantonio et al., 1977;
Cairns et al., 1997; Robinson, 2007). Therefore, BLG was generally
indirectly estimated from ABG by using default root/shoot ratio. This
is a source of uncertainties considering the wide range of species and
their specific root systems. BLG determination remains a major issue
that deserves attention in order to provide complete terrestrial carbon
estimates. Soil carbon pool has been put forward in climate change
studies for its high storage capacity of C. However the variability of the
soil properties and complexity of their interactions remain the main
issues that limit the production of accurate and precise estimation
(Bernoux et al., 2002; Lal, 2005). Soil carbon estimation is derived
mostly from either calculation of average SOC by soil types (e.g. Batjes,
1996) or soil-vegetation units (e.g. Bernoux et al., 2002), either using
the whole range of geostatistics methods (e.g. Phachomphon et al.,
2010), either by fitting statistical models relating controlling factors to
SOC stocks (Yang et al. 2008) and either by the use of mechanistic
models based on soil carbon turnover rates, such as RothC and
Century (e.g. Cerri et al., 2007; Tornquist et al., 2009). Besides carbon
budget purposes, knowledge on SOC and its distribution over the
landscape is essential for effective use, management and conservation
of this resource (Gray et al., 2009).

Identification and understanding of factors controlling C variability
in forests are of prime interest in C quantification andmodeling. Those
determinants and their relative importance may vary depending on
the forest type and location. However, it has long been recognized that
temperature, rainfall, soil texture, pH, type of vegetation and previous
land use are the major factors controlling the amount of SOC (Jenny,
1941; Lugo and Brown, 1993; Bourgeon et al., 1999; Post and Known,
2002; Guo and Gifford, 2002; Krishnan et al., 2007). Regarding forest
biomass pools, carbon stocks aremainly determined by climate, age of
the stand, structure of plantation and sylvicultural cares (Locatelli and
Lescuyer, 1999, Guo and Gifford, 2002). Thus, applying global method
on a specific area is highly prone to uncertainties; site-specific method
based on local relevant factors has to be developed when possible.
Policies based on a Cmapping approach showed to havemore benefits
relative to the ones that focused only on field sampling and
inventories mainly in ABG estimation (Goetz et al., 2009). This is
true not only to provide estimates of forest C-storage capacity at any
location of the study area, but also to take into account the spatial
variability and related uncertainties (Houghton and Goetz, 2008). The
development of remote and imagery technologies made available a
broad range of data (e.g. terrain or land use information) from which
spatially explicit information can be derived and used as predictors.
Remote-sensing based methods and models are still less developed
for BLG and SOC than for ABG (Havemann, 2009). However, recent
advances in statistics applied to ecology associated with increasing
computer performance (McBratney et al., 2003) allow a better use of
the numerous available spatial datasets to provide accurate estimates
in natural ecosystem, even with few data.

For Madagascar, due to mainly the lack of available data and basic
knowledge, C pools are still poorly estimated. Few attempts on
biomass or soil C storage have been achieved at global and national
scales (FAO, 2002; Grinand et al., 2009). Eucalyptus is the major
planted tree species in Madagascar, with stands covering about
150,000 ha which represent half of the afforested area (Randrianjafy,

1999). Such dominance was attributed by eucalyptus importance in
providing goods and services for local people in the highlands where
agriculture activities are limited by soil fertility. Among the different
planted species, Eucalyptus robusta is the most widespread in
Madagascar, mostly for its ability to develop on stony soil, to bear
with fire conditions and to sprout easily (Randrianjafy, 1999).

In this context, the objective of this study was to estimate the
spatial C stocks in above- and below-ground biomass and soil of E.
robusta plantations in the central highlands of Madagascar at the
county scale. More precisely, this study aimed to (i) compare different
regression methods that are usually found in the literature to
determine the best models that can predict C stocks for the three
main C pools of forest land cover (ABG, BLG, and SOC), (ii) identify the
relevant factor sets that explain C stock variation for each of the pools,
and (iii) produce carbon maps based on the best fitted models. This
approach is thought to provide an accurate insight into the carbon
accountancy of the studied area, its spatial distribution and variability.

2. Materials and methods

2.1. Study area

The study area is located in Sambaina-Manjakandriana, a county of
3000 ha in Malagasy Highlands ranging from 1350 to 1750 m
elevation above sea level, at 47°45′–47°50′ East and 18°50′–18°56′
South (Fig. 1). Mean annual precipitation and mean annual temper-
ature are 1600 mm and 16 °C respectively. The land cover is mainly
composed of E. robusta plantations, covering for more than half of the
studied area (54%). The remaining land cover is non-irrigated crop
land (31%), irrigated rice land (11%), natural grassland (2%), and other
land use including village or rock outcrop (2%). Species of natural
grassland are Philippia sp. and Aristida sp. This county has a long
history of tree planting and offers a great opportunity to sample
eucalyptus plantations of various ages so as to establish a chronose-
quence. The first plantation, dated towards 1890, was used for engine
fuel wood supply. Nowadays, eucalyptus plantations are used for
landed property and mainly for energy purposes until now (Carriere
and Randriambanona, 2007). Stands are all privately managed, and
coppices are usually harvested at the age of 3–5 years and stumps, cut
on ground level are left to resprout stool, and are not renewed. No
sylvicultural treatments are practiced and all stems (shoots) are left
after coppicing for natural thinning.

The parental material is composed of intrusive igneous rock
mainly leucogranite and porphyry granite. Dominant soil types are
Ferralsols (86%) according to the FAO classification (FAO, 2006), They
represent low-activity clay, mainly kaolinite (1:1) with mean clay
content of 52.7%; average pH and cation exchange capacity (CEC)
values are 5.23 and 2.8 me 100 g−1 clay. Further description of soils
and morphological units realized during a soil survey and mapping
process is presented below.

2.2. Carbon inventory

The carbon inventory carried out included determination on above
and below ground biomass and soil organic carbon. The surveyed
plots were located with a global positional system (GPS) and data
were integrated onto a Soil and Biomass Database linked with a
Geographical Information System (GIS). They were used as a
reference dataset for spatial analysis (Section 2.3) and carbon
modeling (Section 2.4).

2.2.1. Biomass data
Data on vegetation biomass were obtained from several field

works including inventory and measurements on 41 different
eucalyptus stands (Fig. 2) with size coppice ranging from a few
hundred square-meters to less than 10 ha. These plots were selected
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Fig. 1. Map of the study area showing location relative to the map of Madagascar.

Fig. 2. Digital soil map with plots and transects location.
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according to the age of the plantation and their location. The first
criterion was fulfilled thanks to field investigation that allowed
establishing a chronosequence of eucalyptus plants over a century.
The second criterion was achieved by choosing plot location
representative of the various landscapes and covering as much as
possible the study area (see Section 2.3.3). Due to the small size of the
stands, three plots of 10 m×10 m were randomly set up within each
stand for counting of stools and shoots. Direct measurements of
dendrometric parameters such as circumference of stump and stool
were carried out as used in other studies on short rotation forestry
such as coppices of eucalyptus (Senelwa and Sims, 1998; Verwijst and
Telenius, 1999; Heinsoo et al., 2002; Zewdie et al., 2009). Table 1
presented a summary of main descriptive statistics of these field
measurements.

Allometric equations for ABG assessment were pre-established by
carrying out destructive sampling on 27 selected trees covering the
full range of stump circumference variation. Likewise, BLG component
(stump, coarse root with diameter ≥10 mm and medium root with
diameter ≤2 mm) of each sampled tree was assessed using allometry
equations and based on a sampling unit known as “Voronoï polygon”.
The Voronoï polygon is the area of occupancy of a tree, delimited by
the intersection of the perpendicular lines that pass through the
midpoints of the lines connecting the center of the sampled tree to the
center of the nearest neighboring trees (Santantonio et al., 1977;
Saint-André et al., 2005). After a manual excavation to 1 m depth of all
fresh BLG within this polygon, corresponding dry weight of this BLG
was related to the stump circumference as dry weight of ABG was
related to the basal area of shoots per tree. Allometric equations were
then applied on inventory data for each site in order to calculate the
biomass density per ha. A mean biomass conversion factor of 0.5 was
applied on these biomass densities to derive C density in biomass
pools (Table 2).

2.2.2. Soil data
Soil sampling was carried out in the same eucalyptus stands used

for biomass assessment (n=41). Soils were sampled using soil core
sampler (Cobra TT Hammer, 8.6 cm of diameter) in four replicates for
each stand and at four different depths (0–10 cm, 10–20 cm, 20–
30 cm and 30–40 cm). Soil bulk density was determined after oven-
drying for 48 h at 105 °C and carbon content was measured after dry

combustion with an elemental microanalyzer (Carlo Erba 2000) after
air drying and sieving to 2 mm. SOC stock was then calculated as
follows:

SOC = ∑ BDi × Ci × 1−% stoninessið Þ × tið Þ = 10 ð1Þ

where SOC: C stock in soil to 30 cmdepth (Mg ha−1),BDi: bulk density
of the soil (Mg m−3) in i layer, Ci: C content of the soil (mg C g−1 soil)
in layer i,% stoninessi: percentage of rock fragment N2 mm in the
sampled soil and ti: thickness of the corresponding layer i (i=0–
10 cm, 10–20 cm, …).

This formula (Eq. (1)) calculated the C stocks contained in a fixed
depth or volume of soil. Nevertheless, comparison of SOC changes at
fixed depth might be compromised whether soil compaction took
place (Ellert and Bethany, 1995; Gifford and Roderick, 2003).
Correction was then applied in order to get an identical soil mass
for each SOC stocks. SOCwere calculated for a fixed equivalentmass of
soil of 400 Mg ha−1 which corresponds roughly to a 30 cm depth
(Table 2) (Turner and Lambert, 1999; Paul et al., 2002).

2.3. Spatial analysis

2.3.1. Land use mapping
The combined use of detailed field base vegetation data,

environmental data and satellite imagery is a promising approach
for accurate predictive mapping of vegetation (Poulos et al., 2007;
Ordőňez et al., 2008; Goetz, et al., 2009). In this study, land use
mapping was focused on eucalyptus plantation and more precisely on
the mapping of plantation age and coppice age. These two plantation
characteristics were thought to be important predictors for biomass
and soil carbon pool. Both data issued from 2006 map was used as a
reference. Spatial analysis and remote sensing processing were
performed using ArcGIS 8.3 (ESRI®, 1994–2008) and ENVI 4.0 (ITT,
2009) respectively.

Photo-interpretation was performed on aerial photographs
obtained from the Malagasy National Geographic Institute taken at
three different dates, 1949, 1965 and 1995 and at 1:40,000, 1:25,000,
1:20,000 scales respectively. A supplementary QuickBird image
(DigitalGlobe, 2006) at 2.5 m resolution from 2006 was also used as
base map for photo-interpretation. Aerial photographs were scanned

Table 1
Characteristics and statistics of predictor variables.

Type Name (code name) Type Unit Min Max Mean SD

Site specific Mean circumference of stumps (Cir) Quantitative cm 98.5 196.6 141.8 25.5
Mean circumference at breast height of shoots (CBH) Quantitative cm 4 14.3 7.1 2.5
Stump density (Stocking1) Quantitative Nb stump ha−1 700 5200 2838 1000
Shoot density (Stocking2) Quantitative Nb shoot ha−1 7933 24,800 15,485 3495
Interaction of tree density and their circumference (NhaCir) Quantitative _ 111,500 683,100 388,200 114,320
Clay content (Clay) Quantitative % 29.8 64.2 52.73 8.4

Spatially derived Elevation (Elevation) Quantitative m 1382 1655 1487 73.6
Slope (slope) Quantitative Degree 1 40.7 19.4 9.8
Plantation duration (age 1) Quantitative Year 17 111 67.1 21
Coppice age (age 2) Quantitative Year 3 5 4 0.72
Soil unit (UCsoil) Categoric 3 classes
Morphological Unit (UCmod) Categoric 3 classes

Table 2
Descriptions and statistics of carbon pools.

Carbon pool Components C stocks (kg m−2)

n Min Max Mean SD

Above ground biomass (ABG) Leaves, branches, shoots 29 5.8 38.5 16.4 6.7
Below ground biomass (BLG) Coarse root, Medium root 41 11.2 54.1 39.1 10.0
Soil organic carbon (SOC) Calculated for a fixed equivalent mass of soil (400 kg m−2) 41 63.0 143.8 85.5 18.7
Total carbon stock (TCS) 29 112.9 210.2 145.4 24.5

Components of ABG pool were separated as practiced locally; Coarse root have diameter≥10 mm; 10 cmbdiameter Medium rootb2 mm.
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at 300 dpi, georeferenced in the national spatial reference system
called Laborde (IGN, 1995). Orthorectification was impossible due to
either the lack of camera information or fiducial marks on the
photographs. At each date, resulting image was interpreted according
to five land cover classes: plantation of eucalyptus, slope crop land
(“tanety”), rice crop land, village and rocks. The four land cover maps
were overlaid and areas with eucalyptus in 2006 were kept for further
processing. Considering the date at which eucalyptus appeared for
each corresponding polygon, it was possible to establish a map
representing the following four periods of plantation: more than
57 years, between 41 and 57 years, between 11 and 41 years and less
than 11 years. Field validations, including sociological survey with
interviews of the elders' members in the county, were performed for
classification validation.

A supervised maximum likelihood classification was performed on
20-m resolution SPOT 4 images (CNES©, 2006) acquired at three
different years: 1999, 2003 and 2006. Images were coregistered on
2006 SPOT image and normalized difference vegetation index (NDVI)
was derived for each date. All these images were stacked together and
areas without eucalyptus plantation were masked using the 2006
photo-interpretation. Training sites were digitally delineated using a
visual recognition of eucalyptus cuts, easily detectable on vegetation
index images, and a comparison between dates. This allowed
identifying coppice plot cut in 2006, coppice plot cut in 2003 but
not in 2006, coppice cut only in 1999 and coppice plot that does not
show any clearance area for all these dates. Considering that cuts are
detectable after a few years, we ended with four coppice age classes:
less than one year coppice, one to three years, three to seven years and
more than seven years. Classification accuracy was tested using a
random selection of several sites (145 tests pixels) for each class that
was not used for model calibration. According to Landis and Koch
(1977), classification accuracy is considered satisfactory when global
accuracy coefficient is superior to 0.84 and Cohen's kappa coefficient
superior to 0.81.

2.3.2. Terrain proxies
Digital Elevation Model (DEM) is among the most widely used

spatial data source as it can serve as a basis for multiple purpose study
and because accurate and high resolution DEM are less and less
expensive. In this study the freely available Shuttle Radar topographic
Mission DEM (SRTM 2009) at 90 meter resolution was used. Slope
expressed in percentage was derived using a GIS and tested together
with elevation as potential carbon predictors in modeling and soil
mapping process as presented below.

2.3.3. Digital soil mapping
Soil type diversity may greatly affect eucalyptus growth and

production. As such informationwas not available on the studied area,
a soil survey was carried out in order to produce a georeferenced soil
map (Fig. 2). The traditional exploratory soil survey procedure
described by Legros (2006) was followed. The process was collecting
existing knowledge and survey maps, sketch mapping using aerial
photograph, field trip and sampling with an auger, data synthesis and
soil unit delineation.

Two national scale soil maps, including a morphological map at
1:1,000,000 (Delenne and Pelletier, 1981) and a soil map at
1:1,000,000 (Riquier, 1968) showed a uniform granite parental
material and the dominance of Ferralsols. Previous soil studies
showed the high influence of landform and elevation on soil
differentiation, in the highlands of Madagascar (Bourgeat and
Zebrowski, 1973; Randriamboavonjy, 1996). Field observation of
soil profiles along 12 topographic transects, from the top to the
bottom of the hill at 100 m interval, confirmed the landform–soil type
relationship. A landformmapwas produced using elevation and slope
cutoff values. Three morphologic units were defined: high-gradient
hill characterized by high elevation (1450 to 1750 m of elevation)

with sloping sites (14 to 29% or more), medium-gradient hill
characterized by intermediate elevation (1450 to 1600 m) with
moderate to high slope (8 to 29% or more) and low-gradient foot
slope with low elevation (1350 to 1450 m) and gently slope (b8%).

Thirty two soil profiles to 1 m depth were described and sampled
for complementary laboratory analysis. Field soil description was
focused on criteria to differentiate Ferralsol sub-types (FAO, 2006):
color of the horizon, stoniness or weathered minerals, soil compac-
tion, texture and depth of appearance of the C horizon. Soil laboratory
analysis included: determination of carbon and nitrogen contents by
dry combustion (use of CHN microanalyser), pH measurement,
analysis of the texture with the pipette method, determination of
cation exchange capacity and acidity with the method of cobaltihex-
ammine chloride (Co(NH3)6 Cl3. Three soil types were identified
following the FAO classification, namely: ferralic cambisol (CEC=
4.97 me 100 g−1 clay and about 35.6% of clay content to 1 m depth
and C horizon appearance at less than 60 cm depth,), xanthic ferralsol
(CEC=2.87 me 100 g−1 clay to clay content is around 52% to 1 m
depth, with yellow horizon and C horizon appearance between 60 and
100 cm depth) and orthic ferralsol (deep weathered, with red and
yellow B horizon, CEC=1.33 me 100 g−1 clay and 51.3% of clay
content to 1 m depth and no C horizon beyond 100 cm depth or
deeper). A soil map (Fig. 2) was then delineated on the 2006 image,
according to the profile location, field knowledge and the morpho-
logical map.

2.4. Carbon modeling

2.4.1. Factor sets
From the data collection and spatial analysis of land use and digital

soil, various factors (Table 4) were identified and further used in the
modeling. The first set of variables represented those that were
measured on field and referred more to eucalyptus stand biophysical
variables. The second set of variables represented spatially derived
variables which cover the whole county. Several combinations of
variable were tested in order to select the most relevant factors
related to the considered pool.

2.4.2. Regression
Regression models were used in this study in order to (i) predict C

stocks using various factor sets and to (ii) evaluate influences of the
relevant predictors in the modeling. Three different regression
methods were tested: a simple linear regression (SLM) that expressed
the relationship between C stock and a single quantitative predictor, a
multiple linear model (MLM) and a boosted regression tree model
(BRT) that both involved several factors into the modeling. The MLM
is a linear regression for different quantitative factors. It is commonly
used in environmental studies for testing the interaction between
quantitative factors from the b-coefficients indicated on the linear
model expression (Bourgeon et al., 1999). BRT is considered as a
“machine learning” algorithm that combines the strength of regres-
sion tree algorithm known as CART (Classification and Regression
Tree; Friedman, 2001; Poulos et al., 2007) and boosting which is an
adaptive method for combining many simple models to improve the
predictive performance (Elith et al., 2008). The BRT algorithm
generated small decision trees of recursive binary splits from a set
of learning case focusing iteratively on the less well-predicted case.
The final model is a linear combination of many sub-tree models. BRT
inherited several advantages from CART say the ability to deal with
numeric or categorical factors, nonlinearity and to its robustness to
outliers, irrelevant factors and missing data. Boosting tended to
increase predictive performance compared to CART and to better
handle over-fitting (McBratney et al., 2003; Brown et al., 1999;
Krishnan et al., 2007). BRT was previously used in C stock mapping
(Krishnan et al., 2007) and other soil property estimation (Brown et
al., 1999; Tittonell et al., 2008; Martin et al., 2009) and soil landscape
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prediction (Grinand et al., 2008). A thorough description of BRT is
provided in Elith et al. (2008). Prior to analyze the predictive
performance, BRT model has to be optimized by setting up three
parameters: the learning rate, tree complexity and number of trees.
Elith et al. (2008) recommend fitting models with at least 1000 trees.
From various tests (data not shown) a tree complexity of 3 and a
learning rate of 0.005 were found to provide the lowest predictive
deviance between 1000 and 3000 trees. They were retained for
further processing and the optimal number of trees was determined
by a leave-one-out cross-validation. This procedure prevented over-
fitting by calibrating the model on n-1 sample and validating on the
sample excluded from calibration, each sample being excluded once
in turn. The final optimal number of tree was thus determined by the
minimum predictive deviance obtained. All data regression and
mining tasks were performed with an R-stat software (R Develop-
ment Core Team, 2009), using glm package for linear regression
(Hastie and Pregibon, 1992) and gbm package (Ridgeway, 2007) for
BRT modeling.

2.5. Relative importance of factors

Relative importance of factors can be measured differently
according to the model used. For MLMmodels this might be achieved
by comparing b-coefficients on the linear fitted formula. For BRT, the
contribution of the factor into the model was a measure of “the
number of times a factor is selected for splitting, weighted by the
squared improvement to the model as a result of each split, an
averaged over all trees” (Elith et al., 2008). In our study, the
importance of factors was evaluated at two levels: by changing the
set of factors used in the modeling and by looking at the
measurements provided by the models presented above.

2.6. Carbon mapping and quantification

Carbon mapping of natural biosphere component is under
considerable studies that aim to find out easy-to-use, accurate and
reproducible method. These methods include a range of approaches
from small-scale simple method to fine-scale more complex method,
without intermediary options. For instance, in biomassmapping using
remote sensing data, Goetz et al. (2009) identified three main
approaches: Stratify & Multiply (SM), Combine & Assign (CA) and
Direct Remote Sensing (DR). SM is the simplest approach which
estimates total C values by multiplying an assigned single value (or a
range of values) for thematic map class with the area of this thematic
class. CA is an extension of SM approach which essentially uses a
multiple spatial dataset to produce smaller spatial units of aggrega-
tion. DR consists in deriving C stocks directly from satellite
measurements, by calibrating them to field estimates using statistical
technique such as regression models.

A modified DR technique was used in this study as it involved
regression model and a set of spatial and non-spatial predictors. The
models that provided the most accurate results from the modeling
were selected to produce C stock map for each pool (ABG, BLG, and
SOC). The first step involved a standardization of the spatial
predictors. Vectors explanatory variables (soil and landforms units)
were converted into raster. All corresponding grids were adjusted to
the same map extent and resampled with the same 30 meter grid cell
size. This value was considered suitable for a 1:25,000 output
mapping as suggested by McBratney et al. (2003) for pedometric
application. For the numeric dataset, a bilinear resampling method
was used in order to give a more suitable continuous surface.
Secondly, these variables were then imported in R (R Development
Core Team, 2009) for modeling. The retained pool-specific model was
applied on each of the relevant factors set so that to predict carbon
within each pool. Finally, predicted values of C stock in each C pool

calculated per pixel were exported back into a GIS. This method
produced three pool-specific carbon maps of the studied area.

The total C stocks map per pixel was afterwards estimated as
follows (Ordonez et al., 2008):

Ctotal = SOC + Cblg + Cabg ð3Þ

where Ctotal: total C stocks; SOC:C stocks in fixed equivalent mass of
soil in 0–30 cm depth; and Cblg: C stocks in belowground component;
all expressed in Mg C ha−1.

The total C stock in Gg (109 g) over the entire county, for each pool
and for total C,wasfinally estimated bymultiplying C values of pixels by
0.09, i.e. the surface in ha of a 30-m cell-size and summing the results.
The C stock mean error resulting from the modeling was estimated
using the mean stock multiplied by the coefficient of variation.

2.7. Validation procedure

Model performances were evaluated using the root mean square
error (RMSE), the coefficient of determination (R2) and the bias
(measured — predicted values). They were calculated using a leave-
one-out cross validation procedure as described in Section 2.4.2. Due
to the low number of sample for the AGB dataset and the willingness
to get a unique accuracy measurement method, a more comprehen-
sive validation framework using a 10 fold cross validation and a test
set could not be carried out. We thus considered our results as an
internal validation. Coefficient of variation (CV) associated with the
mean C stock for each component was calculated to show the
variation of C stock for each pool. The ratio of performance to
deviation (RPD) was also computed in order to interpret the
prediction ability of each model (Chang and Laird, 2002; Gomez et
al., 2008). RPD corresponded to the ratio between the standard
deviations of the variable to predict over RMSE. Quality of the model
was interpreted according to the three classes of RPD proposed by
most authors (Chang et al., 2001; Pirie et al., 2005; Du et al., 2009; Du,
and Zhou, 2009): RPDN2 corresponded to models that can accurately
predict the tested property, RPD between 1.4 and 2 gathered models
with a possible improvement, and models of RPDb1.4 indicated no
prediction ability of the model.

3. Results and discussions

3.1. Correlation between variables

Relationships between variables including quantitative predictors
and C stocks are given in Table 3. About field variables, the following
was observed: (i) a positive correlation (R=0.59) between elevation
and the slope close to the delimitation of morphology units, (ii) a
negative correlation (R=−0.55) between elevation and soil clay
content in relation with soil type distribution, (iii) a negative
correlation between the mean circumference at breast height (CBH)
and both density of shoots (Stocking2, R=−0.53) and elevation (R=
−0.45) but a positive onewith coppice age (Age2, R=0.58) and (iv) a
negative correlation between the mean circumference of stumps per
plot (Cir) and both the plantation age (Age1, R=−0.45) and density
of plantation (Stocking1, R=−0.58) which may have resulted from
management practice or natural regeneration (sucker development).

For the C stock variables, (v) SOC stock was positively correlated
with elevation (R=0.56) and slope (R=0.72), (vi) Cblg was
correlated with Cir (R=0.48), interaction of density of stumps and
their circumference (NhaCir, R=0.49) and elevation (R=0.4) and
(vii) Cabg showed relationships with CBH (R=0.53), coppice age
(R=0.65), density of shoots (R=−0.6) and slope (R=0.48).

Field variables seemed to be well correlated with C stocks in all
compartments. Based on these correlations between variables, several
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model structures have been established in order to determine and
compare theirpredictive ability for C stock estimationswithin eachpool.

3.2. Results of modeling

Table 4 summarized the results from themodeling trials where, for
each compartment, all model approaches (SM, MLM and BRT) were
tested. For predictive performance (comparison of observed and
predicted values of C stock), BRT model offered the highest values of

coefficient of determination (R2) and RPD and the lowest error values
(RMSE).

For the ABG component, the range of values for R2, RMSE and RPD
were respectively 0.12–0.74, 7.42–3.47 and 0.92 to 1.95. Single
predictor as coppice age was not enough to explain variability of
Cabg (always below 42%) and MLM and BRT presented similar
performance when considering Age2, Stocking2, Slope and CBH as
predictors.

For the BLG component, R2, RMSE and RPD varied in the ranges
0.02–0.85, 10.23–3.89 and 0.66–2.59 respectively and NhaCir (inter-
action between stump stocking and circumference) should be a good
predictor of Cblg. Actually, NhaCir could explain more than 80% of
Cblg variability, even with SM. Concerning SOC prediction, values of
R2, RMSE and RPD ranged 0.04–0.68, 18.6–11.38 and 1.06–1.72,
respectively. Plantation duration alone was not enough to explain
evolution of SOC stocks and considering all possible relevant
predictors allowed to account for less than 70% of SOC variability.

BRT models which considered the higher number of relevant
predictors offered the best performance; they correspond to Eqs. (16),
(22) and (31) in Table 4 for ABG, BLG and SOC respectively. The

Table 3
Correlation matrix between carbon pools and predictor variables.

SOC Cblg Cabg Cir CBH Age1 Age2 Stocking1 Stocking2 NhaCir Altitude Slope Clay

SOC 1.00
Cblg 0.21 1.00
Cabg 0.21 0.14 1.00
Cir 0.32 0.48 0.15 1.00
CBH −0.35 −0.24 0.53 −0.01 1.00
Age1 0.02 0.13 −0.09 −0.45 −0.11 1.00
Age2 −0.03 0.19 0.65 −0.06 0.58 0.18 1.00
Stocking1 −0.17 0.17 −0.14 −0.58 −0.23 0.43 −0.02 1.00
Stocking2 −0.21 0.17 −0.60 −0.10 −0.53 0.11 −0.44 0.16 1.00
NhaCir −0.05 0.49 −0.09 −0.10 −0.25 0.25 −0.06 0.86 0.15 1.00
Altitude 0.56 0.40 0.12 0.24 −0.45 −0.07 0.08 −0.10 −0.11 −0.01 1.00
Slope 0.72 0.27 0.48 0.10 −0.28 0.12 0.19 0.11 −0.28 0.15 0.59 1.00
Clay −0.09 −0.32 0.00 0.20 0.33 −0.31 −0.25 −0.30 −0.14 −0.25 −0.55 −0.31 1.00

Value in bold represent significant relationship between two variables with pb0.05.

Table 4
Characteristics of models tested for each pool.

Pool Approach Variables R2 RMSE RPD Bias n

Cabg SLM
Age2 0.33 5.53 1.23 −2.86 29
Stocking2 0.32 7.42 0.92 −0.5 29
CBH 0.15 6.27 1.09 −3.39 29
Slope 0.12 6.24 1.06 −1.57 29

MLM
Age2, Slope, CBH 0.4 5.3 1.29 −2 29
Age2, Stocking2, Slope 0.25 5.8 1.17 −1.2 29
Age2, Stocking2, Slope, CBH 0.6 4.29 1.59 0.02 29

BRT
Age2, Slope, CBH 0.68 3.84 1.76 −0.65 29
Age2, Stocking2, Slope 0.58 4.37 1.55 −0.54 29
Age2, Stocking2, Slope,
CBH

0.74 3.47 1.95 −0.09 29

Cblg SLM
Age1 0.02 10.23 0.66 10.55 41
NhaCir 0.52 7.05 0.96 8.8 41
Altitude 0.09 9.68 0.7 1.28 41

MLM
Age1, NhaCrir, Altitude 0.48 7.37 1.36 14.45

BRT
Age1, NhaCrir, Altitude 0.85 3.89 2.59 −1.34 41

SOC SLM
Age1 0.041 18.6 1.06 −3.13 41
Altitude 0.28 16.86 1.19 −2.55 41
Slope 0.18 17.19 1.18 −7.6 41

MLM
Age1, Altitude, Slope 0.49 14.6 1.29 −5.05 41
Age1, Altitude, Slope, Cabg,
Cblg

0.327 16.8 0.4 −5.06 29

BRT
Age1, Altitude, Slope 0.61 11.82 1.59 −0.5 41
Age1, Altitude, Slope, Cabg,
Cblg

0.66 11.68 1.682 −1.83 29

Age1, Altitude, Slope, Cabg,
Cblg, UCsoil, Ucmod

0.68 11.38 1.72 0.51 29

(i) Models tested are SLM for simple linear regression, MLM for multiple linear
regression and BRT for boosted regression tree and (ii) C pool modeled are Cabg for
aerial biomass, Cblg for belowground biomass and SOC for soil organic. Values in bold
represent the best criteria for the choosen fitted models, using the T Student test
pb0.05.

Fig. 3. Bar charts giving the relative importance of predictor variables determined by
BRT approach and used for estimation of C stock in (a) ABG pool, (b) BLG pool and
(c) SOC pool.
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relative importance of predictor variables in each compartmentmodel
is represented in bar charts (Fig. 3). For Cabg, slope and mean
circumference of shoots mainly contributed in the model (45 and 28%
respectively); the contribution of coppice age and density of shoots
were less important (about 18 and 10% respectively). ABG density was
affected by topographic aspect (Leuschner et al., 2007), CBH and
coppice age as they are concerned by establishment of allometry
equations (Telenius and Verwijst, 1995; Senelwa and Sims, 1998,
Heinsoo et al., 2002; Zewdie et al., 2009) and density (Proe et al.,
1999; Proe et al., 2002). Concerning Cblg, density was an effective
predictor but only when values were below 104 stools ha−1 in Tomé
and Verwijst (1996) and, presumably, BLG became more important
once trees had a given size (Sumanta, 2007). These reasons may
explain the large contribution (more than 80%) of NhaCir in model
construction, this variable reflecting interaction between Cir and
density of stumps. Besides, elevation and plantation age were also
found to affect Cblg by increasing it as observed in other studies (Paul
et al., 2002; Guo and Gifford, 2002; Leuschner et al., 2007). For SOC,
the largest contribution in model was from elevation (about 85%),
followed by slope and plantation duration (Age1). Soil classes are
markedly related to landform in the highlands of Madagascar
(Bourgeat and Zebrowski, 1973; Randriamboavonjy, 1996). Concom-
itantly increased elevation could induce microclimate patterns,
mainly in moisture regime; with soil acidity and eucalyptus residue
recalcitrancy to microbial activity, that would explain the observed
SOC accumulation (Guo and Gifford, 2002; Chen et al., 2005; Yimer et
al., 2006; Leuschner et al., 2007).

In summary, cross validation from retained BRT models confirmed
the performance of selected models, as shown in Fig. 4. General forms
of the models were as follows: Cabg-f (Slope, CBH, Age2, and
Stocking2), Cblg-f (NhaCir, Altitude, and Age1) and, SOC-f (Altitude,
Slope, and Age1).Values of R2 and RPD between measured and
predicted C stocks ranged from 0.61 to 0.85 and 1.6 to 2.59
respectively. Based on RPD thresholds mentioned in the statistic
analysis section, the C stock models have good prediction ability and
could be improved (mainly for SOC).

4. Mapping of C stocks and their variability

The combination of selected BRT models within a GIS produced C
stock maps for each compartment (Fig. 5). C stock values over the
study area varied from 9 to 27 Mg ha−1 in ABG, 22 to 47 Mg ha−1 in
BLG and 61 to 109 Mg ha−1 in SOC. The total C stocks ranged from 104
to 183 Mg ha−1, and ABG, BLG and SOC compartments represented
respectively 13.5%, 28% and 58.5% of the total C stock.

Comparing with published data and regarding the particularity of
the ecosystem studied herein (old coppice of eucalyptus plantation),
it was noticed that, for each component: (i) the values of C stock
concerning ABG were close to that obtained in other coppiced
eucalyptus study (Zewdie et al., 2009), (ii) C stocks in the BLG were
by far higher (reaching more than six times) than those mentioned in
other studies where the stands corresponded to high forest of
eucalyptus (Harmand et al., 2004; Saint-André et al., 2005), and (iii)
SOC values were in the same range of value obtained byMaquere et al.
(2008) under coppice and high forests of eucalyptus plantations in
Brazil.

5. Carbon accountancy at county scale

C-pool variability within studied plots expressed by the coefficient
of variation was used to provide a first estimate of the C variation over
the entire study area. We obtained values of 41.5% for ABG (n=29),
22.1% for BLG (n=41), 25.7% for SOC (n=41) and 17%, for total-C
(n=29). The moderately high values observed here reflected the
complexity of the studied ecosystem andmainly the high variability of
intrinsic biomass and soil properties. For the county, C stocks were

32.25±13.28 Gg C for ABG, 66.63±14.72 Gg C for BLG and, 139.36±
35.88 Gg C for SOC, contributing to a total stock of 238.26±40.5 Gg C
(1 Gg=109 g). When considering the morpho-pedology map (Fig. 2),
higher C stocks occurred mainly in the west part of the studied area
where landforms were characterized by high elevations and impor-
tant slopes. Higher stocks might be related mainly to elevation
variations as found in other studied mountainous area (Schwartz and
Namri, 2002; Chen et al., 2005; Yimer et al., 2006; Lemma et al., 2007;
Leuschner et al., 2007; Zhang et al., 2008). Explanations proposed by
these authors were: i) the particular bio-functioning of roots in a
coppice ecosystem where stump recovered by cambium were added
to the remaining root system in each new resprouting (Wildy and
Pate, 2002), ii) an investment in BLG component for C allocation due

Fig. 4. Graphs of predicted vs measured C stocks for each model retained in (d) ABG
pool, (e) BLG pool and (f) SOC pool.
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to reduced nitrogen supply in low temperature, and iii) the influence
of litter production and quality associated with microclimate at high
altitude which favored SOC accumulation through plantation duration
(Lal, 2005; Su et al., 2006).

The ecosystem studied herein is a wood fuel coppice systemwhere
after each cutting cycle only BLG and SOC remain in the site, and these
stocks of C might constitute carbon-neutral and carbon-negative
compartments as described by Mathews (2008). Actually, regarding

Fig. 5. C stock (kg m−2) distribution maps in the deferent pools of the study area based on predicted C stocks obtained by the use of boosted regression tree models, in (g) the ABG
pool, (h) the BLG pool (i) the SOC pool and (j) all pools. The scale is in 1:25,000. * 1 Gg=103 Mg=109 g.
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mainly CO2 as the main greenhouse gas concerned by this ecosystem,
ABG pool is first a C-neutral fuel because it absorbs CO2 as it grows and
releases the same C back into the atmosphere when burnt, but
constitutes a fuel switching by avoiding C fossil consumption. BLG and
SOC compartments are effective C negative compartments as they
absorb CO2 as they grow and release less than this amount into
atmosphere through carbon capture and storage.

6. Accuracy considerations

Measurement of estimation accuracies resulting from modeling
was achieved using correlation between observed and predicted
values and determination of the RMSE and RPD.

Theses values provide insight at sampling location but one cannot
extrapolate theses measurement to the entire study area. Thus
detailed accounting of all sources of error is required using an error
propagation process estimated for instance with Monte Carlo
simulations. So far, in C budget accounting studies, accuracy has
been little reported as many sources of errors have to be investigated
(Brown et al., 1999; Phillips et al., 2000; IPCC, 2003; Peltoniemi et al.,
2006; Krishnan et al., 2007; Zhang et al., 2008; Heim et al., 2009). They
include: sample plot location and representativeness, laboratory
analysis error, land cover mapping error from remote sensing,
measurement precision in the field, regression error from modeling,
tree based biomass error derived from allometric regression. Although
deeper accuracy assessment is required, this study provided first
references values for C budget at a local scale (1:25,000). Considering
the emerging C market regarding forested lands or terrestrial
ecosystem in general, focus on accuracy is recommended to provide
credible C gain or loss estimates.

7. Conclusions

This study presented a full integrated evaluation of evaluation of C
stocks on eucalyptus plantation at the sub-regional scale including
field sampling, digital soil mapping, land cover mapping using remote
sensing, carbon stock calculation of all the pools, multivariate
modeling and production of carbon maps. Results demonstrated
that there were different relevant factor sets which controlled C
storage in each pool. Slope, coppice age, mean circumference at breast
height and density of shoots were the best predictors for the ABG; for
BLG, theywere predictors that considered the interaction between the
mean circumference and density of stools, elevation and plantation
duration and; for soil organic carbon pool, they were elevation, slope
and plantation duration. This work showed that multiple linear
regression (MLM) and boosted regression tree (BRT) were efficient
tools to estimate C stocks in the different compartments over the
studied area, with more improvement using BRT. Accuracy assess-
ment carried out using coefficient of determination (R2) and ratio of
standard deviation to prediction error (RPD) showed satisfactory
results, respectively 0.74 and 1.95 for AGB, 0.85 and 2.59 for BLG, and
0.61 and 1.59 for SOC.

In terms of C quantity, BLG and SOC compartments, with their
contribution of 28% and 58.5% to the total C that amounted 238.26±
40.5 Gg (1 Gg=109 g) were pointed out to constitute major compo-
nents for C storage in these coppices of E. robusta in the highlands of
Madagascar. Hence, we suggested that future studies on carbon
accounting on natural ecosystem especially forest land cover should
better consider these twomain C pools. They may greatly influence or
counteract the increasing trend of atmospheric CO2 concentration.

Nevertheless, these assessments considered only spatial variability
between studied eucalyptus stands as uncertainty assessment.
Coefficient of variation ranged from 17 to 41.15% depending on the
pool. They need to be computed accurately at each step of the C stock
estimation; they could be also reduced by improving sampling
designs.

Finally, this work allowed a better understanding of the spatial and
temporal distributions of C stock in Malagasy Highlands. This study
provides new insight into the development or improvement of
methodologies that reliably define the baseline of C stock in natural C
pool atMadagascar national scale. Presently, this is an essential need for
Madagascar as a nation which is setting up climate change policies that
rule and generate activities such as Clean DevelopmentMechanism and
Reducing Emissions from Deforestation and Degradation.
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