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Abstract: The fight against deforestation and forest degradation is now a major challenge for the
preservation of global forest ecosystems. The remote sensing forest monitoring methods that are
currently deployed are not always adapted to the Ivorian context because of the high cloud cover,
diversity of shaded crops, and land clearing techniques. This study proposes a drone-based approach
to assess intra-annual tree losses in the Bossématié classified forest. The method used is based on a
detection analysis of tree losses in forest areas from a time series of aerial images acquired by drones
from November 2018 to April 2019 on five sites in the studied forest. Based on photogrammetric
models and photointerpretation, tree heights and tree crown sizes were estimated. Then, tree losses
were detected based on the variation of tree heights during the study period. An analysis of the
distribution of tree heights in Bossématié classified forest reveals that the maximum tree height was
65.06 m in November 2018 and 64.07 m in April 2019 with an average tree height of 34.29–37.00 m
in November 2018 and 34.63–36.88 m in April 2019. The average tree crown area, meanwhile, was
estimated to be 152 m2. With an estimation accuracy of about 97%, these tree structural data indicate
a minimum loss of 107 trees corresponding to a clearing area of 2 ha across all the surveyed sites
from November 2018 to April 2019. This forest monitoring approach shows a considerable local loss
of biodiversity and should be involved in the implementation of preservation, rehabilitation, and
deployment strategies in an operational deforestation monitoring system in Côte d’Ivoire.

Keywords: drone; REDD+; classified forest; deforestation; Côte d’Ivoire

1. Introduction

Tropical forests are the focus of important global issues related to the preservation
of biodiversity, climate change, and sustainable development [1]. In West Africa, the
conversion of forest areas into farmland over the 2000–2010 period has been estimated
at 19% by the Food and Agriculture Organization (FAO) and represents a loss of about
870,000 ha per year [2]. In Côte d’Ivoire, more than 40% of the forests disappeared within
25 years (between 1990 and 2015), with forest cover decreasing from 7.8 million ha in 1990
to 5.1 million ha in 2000 and then to 3.4 million ha in 2015, representing about 11% of
the national territory [3]. To face this challenge, Côte d’Ivoire has been involved in the
international mechanism for reducing emissions from deforestation and forest degradation,
sustainable management of natural resources, enhancement of forest carbon stocks, and
conservation of forests (REDD+) since June 2011. A new strategy for forest preservation,
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rehabilitation, and expansion was adopted at the beginning of 2019, a few months before
the adoption of a new forestry policy in July of the same year [4]. Essentially focused
on classified forests, this policy first aims to reduce deforestation in classified forests by
upgrading the remaining well-preserved classified forests to protected area status. Second,
it aims to “regularize” the situation of highly degraded classified forests by introducing a
new status for classified agroforests [5], which is still being widely deliberated at the time
of writing. This policy is to be based in particular on the deployment of an operational
land and land clearing monitoring system. However, the monitoring methods are not
adapted to the Ivorian context, which is marked by shaded cultivation, high cloud cover,
and new clearing methods that are difficult to detect. Monitoring studies of tropical surface
conditions have tremendously diversified in recent years with the development of new
sensors and the establishment of new methods [6–12]. In Côte d’Ivoire, monitoring land
use and land cover dynamics by remote sensing faces many challenges. Land clearing
starts in a very discrete way in small areas and progressively extends to the entire classified
forest or protected area [13,14]. In this context, the traditional use of Landsat-type satellite
images [14] is justified by the high availability of image archives (over 30 years) but may be
limited for annual monitoring due to their low acquisition frequency and spatial resolution
(30 m). The constellation of Sentinel-2 satellites, in operation since 2015 (Sentinel-2A) and
2017 (Sentinel-2B), provides free images at 10, 20, and 60 m resolutions. This represents
a strong interest for West African institutions that still do not have sufficient financial
means for the acquisition of images. The use of these sensors makes it possible to more
clearly distinguish land use and land cover categories and makes images without clouds
attainable. Indeed, the intertropical zone, particularly Côte d’Ivoire, is subject to heavy
cloud cover that limits the application of optical remote sensing [11]. Following the lead
of [15], several studies have shown the potential of Sentinel-2 sensors to significantly
contribute to land monitoring. In Côte d’Ivoire, these images were used to assess the
dynamics of land cover and land use change on a regional scale covering the current study
area [12]. The results revealed an annual deforestation rate of 0.35% in the Bossématié
classified forest. The present study seeks to assess intra-annual tree loss in this forest. These
two studies are therefore complementary from the point of view of exploiting the potential
use of Sentinel-2 images and aerial images acquired by drone for forest management. The
reduced endurance of UAVs is a limiting factor for forestry uses. The use of drones is
thus a tool for analysis at the local scale only [16]. Despite this limitation, they are being
increasingly used in natural resource management [17], including rangeland management
and monitoring [18,19], forest biodiversity assessment [20], fire [21] and ecosystem structure
monitoring [22,23], precision agriculture [24], and wildlife counts [25]. The use of drones
for detecting illegal activities has been discussed previously [26,27]. However, applications
of this technology for conservation, including land use change detection, are yet to be
explored [28,29], particularly in Côte d’Ivoire, where they have been undertested. This
study aims to assess tree losses in the Bossématié classified forest over an intra-annual
period. The methodology developed is based on aerial images acquired by drones as well
as photogrammetry and stereoscopy techniques. The goal of this study is to contribute to
the fight against illegal clearing in classified forests and protected areas.

2. Materials and Methods
2.1. Study Area

The study area is the classified forest of Bossématié. It covers an area of approximately
220 km2 and is located between latitudes 06◦21′30” and 06◦32′30′′ north and longitudes
03◦24′30′′ and 03◦34′30′′ west in the southeast of Côte d’Ivoire in the Indénié-Djuablin
Region (Figure 1). The classified forest of Bossématié is located in the former cocoa belt—
named due to the high cocoa production here in the 1980s [12]. It is a classified forest of
Côte d’Ivoire that is still well-preserved despite being subject to very strong pressures [12].
Moreover, it hosts the last population of forest elephants (Loxodonta africana) of the southeast.
The vegetation is that of the Guinean domain characterized by dense evergreen rainforest.
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Dense forests represented 83% of the classified forest in 2016, while degraded forests
represented 8%, and perennial crops of cocoa, Theobroma cacao (Sterculiaceae); coffee, Coffea
arabusca and Coffea canephora (Rubiaceae); and rubber, Hevea Brasiliensis (Euphorbiaceae),
represented 9% at the same date [12]. Within this forest, lianas are less numerous; the
herbaceous stratum is generally well represented, with a predominance of Poaceae and
Acanthaceae. The vegetation is of the semideciduous type as defined by [30] with rare
epiphytes. This vegetation can be described as Malvaceae and Cannabaceae [31]. It
is populated in abundance by Celtis mildbraedii (Cannabaceae), Nesogordonia papaverifera
(Malvaceae), Triplochiton scleroxylon (Malvaceae), and Mansonia altissima (Malvaceae).
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Figure 1. Geographic location of the Bossématié classified forest. Overview of study areas and 2016
land cover [12].

2.2. Overall Methodology

For the implementation of this study, a sampling protocol was set up that combines
photogrammetry, stereoscopy, and change analysis techniques using very high spatial
resolution images acquired with a drone (Figure 2).
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Figure 2. Protocol for acquisition, processing, and analysis of drone data for the early detection of
tree loss.

2.2.1. Sampling Plan

Eleven test sites were identified with the assistance of ecoguards to conduct this study
in the Bossématié classified forest (Figure 1). The flights were conducted during the dry
season at these sites during three acquisition campaigns: in November 2018 and April 2019.
These sites are characterized by their 2016 land-use type, allowing us to evaluate the area’s
level of deforestation and degradation, as well as its accessibility (Table 1). The level of
deforestation and degradation of these sites varies from 2% to 41% [12].

Table 1. Characteristics of different study sites in the Bossématié classified forest.

Site
Name

Acquisition Dates Types of Land Use and Land Cover in
2016 (ha)

Area (ha)
Level of

Deforestation and
DegradationAcquisition 1 Acquisition 2 Dense Forest

Formation
Degraded

Forest Crops

Site 1 01-Nov-18 09-Apr-19 120.8 5.7 4.5 131 8%
Site 2 01-Nov-18 09-Apr 19 117.3 10.5 3.2 131 10%
Site 3 01-Nov-18 09-Apr-19 128.7 1.8 0.4 131 2%
Site 4 02-Nov-18 10-Apr-19 122.2 4.8 4.9 132 7%
Site 5 03-Nov-18 12-Apr-19 122.6 3.6 3.5 130 5%
Site 6 03-Nov-18 12-Apr-19 117.2 2.3 11.6 131 11%
Site 7 03-Nov-18 10-Apr-19 124.1 5.8 2.13 132 6%
Site 8 03-Nov-18 10-Apr-19 94.9 4.7 31.4 131 28%
Site 9 04-Nov-18 11-Apr-19 101.6 14.3 15.1 131 22%

Site 10 04-Nov-18 11-Apr-19 76.99 20.8 31.9 130 41%
Site 11 04-Nov-18 11-Apr-19 86.4 4.7 39.8 131 34%
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2.2.2. Drone Used for Image Acquisition

In this study, a DJI Mavic Pro drone (Figure 3) was used. It is a multirotor system
with four motors (quadcopter) powered by a LiPo (lithium polymer) smart battery with
a capacity of 3830 mAh and an autonomy of 27 min. It features a wingspan of 20 cm, a
weight of 736 g, and a maximum speed of 65 km/h. The DJI Mavic Pro is equipped with a
12-megapixel 4 K camera (stabilized by a pod). This camera acquires images in true colors
with 8-bit radiometric resolution. This acquisition is carried out automatically using a
cadence previously defined during the flight preparation. The system uses autonomous
ultrasonic sensor flight technology to reduce the risk of accidents and is equipped with
a GPS–GLONASS location system. The system includes a ground control radio station
(connected to a smartphone) with a range of 7.3 km under normal conditions (no obstacle
to the transmission of the radio signal) and a battery life of 1.5 h.
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The configuration of the drone and the flight planning were conducted with a DJI Go
4 (version 4.3.28) and DroneDeploy (version 4.0.0) software, respectively.

2.2.3. Acquisition of Aerial Images by Drone

Aerial images were acquired at a flying altitude of 200 m with a ground resolution
of 6 cm/pixel and a footprint of 240 × 180 m per image. These images were acquired in
the visible light spectrum (red, green, and blue) and have already been georeferenced (the
geographical location of the center of each image is known). A rate of one image every
42 m allowed us to obtain a longitudinal coverage of 65%. A spacing of 95 m between the
flight lines allowed for a lateral overlap of 75%. These significant overlaps ensure proper
image stitching in the production of an orthomosaic according to photogrammetric and
stereoscopic principles [28,29]. The entire set of 11 flight plans, each constituting nine
parallel flight lines or transects in a north–south direction, allowed us to fly over an area of
between 130 and 132 ha (Figure 4).
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2.2.4. Orthomosaic and Digital Surface Model Production

Our methodology for processing and analyzing the aerial images (Figure 2) was based
on the principles of photogrammetry and stereoscopy. The first step was performed in
the Agisoft Photoscan Professional software (version 1.4.0) and includes orthorectification
and mosaicking steps. The process is subdivided into the alignment of aerial images, the
production of a scatter plot, gridding, and texturing, allowing us to generate a digital
surface model (DSM) and an orthomosaic [24,28,32]. As the images are located by GPS,
alignment aims to reconstruct the acquisition geometry of the aerial images from the
identification of link points; point cloud aims to produce a 3D model, and mesh aims to
reconstruct an analysis grid to facilitate orthomosaic production; finally, texturization aims
to create the texture for the 3D model [33]. The orthomosaics and DSMs were cleaned
to remove poor (blurred) quality due to edge effects. The quality of photogrammetric
processing was evaluated following several parameters, including the percentage of aerial
image alignment and projection errors associated with the aerial image stitching process.

2.2.5. Geometric Corrections

In a change analysis approach, it is necessary to considerably reduce geometric errors.
Geometric errors are related to uncontrolled movements (e.g., wind force) of the drone with
respect to the previously defined flight line and to variations in altitude during shooting [34].
The digital surface models obtained were therefore georeferenced. The method used is
image-to-image georeferencing: the DSM at date T2 is georeferenced from the DSM at date
T1 on all the sites studied. The transformation applied was polynomial, and the resampling
method was nearest neighbor.

2.2.6. Study Site Portion Delineation and Extraction

The orthomosaics and DSMs produced generally have some artifacts and blurred
pixels, mostly along image boundaries. To guarantee the good quality of the image intended
for processing, it is necessary to delimit and extract portions of the different study sites;
this is to get rid of the poor quality (blurring) due to edge effects (Figure 5). Thus, from an
initial area varying between 130 and 132 ha for each site, the areas retained at this step for
Sites 1, 6, 8, 9, and 11 are 87, 94, 97, 102, and 121 ha, respectively.
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2.2.7. Digital Terrain Model Production

In this study, the DSM was used to produce the digital terrain model (DTM) following
three steps. The first step consisted of partially eliminating the trees (pseudo DTM) by
resampling the DSM at 10 m resolution while keeping the minimum elevation values
(ground elevation). The second step consisted of a circular convolutional filter of minimum
type whose size 13 was chosen after various tests. This filter size corresponds exactly to
6 pixels on either side of the central pixel (i.e., a filter with a radius of 60 m). This second
step allows us to eliminate all the trees while keeping the ground elevations. At this stage,
the result is a DTM with a spatial resolution of 10 m. Finally, the last step consisted of
resampling the generated DTM at a 20 cm resolution.

2.2.8. Generation of Digital Tree Height and Canopy Models

In the field of forestry, the distribution of vegetation in general is known as digital
height model (DHM). The distribution of tree heights is also known as digital canopy
model (DCM). The DHM was calculated for each of the priority monitoring sites in the
Bossématié classified forest based on two other landscape indicators: the DSM and the
DTM according to Equation (1).

DHM = DSM − DTM (1)

The DTM produced may have heights that do not always correspond to tree heights
but rather to low vegetation heights (grass or cocoa crop) (Figure 6). Therefore, the DCM
was calculated from the DHM based on the threshold value of minimum forest tree height
excluding perennial cocoa–coffee crops. This threshold value will be defined from the
statistical analysis of the vegetation height distribution:

DCM = DHM − ρ (2)

where ρ is the height threshold value obtained with the drone to ensure that only forest
trees are detected.
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2.2.9. Estimation of Tree Crown Area

The crown is the part of the tree that is on top of the bole, including the branches, the
different twigs, and the leaves [36] (Figure 7). The estimation of the ground area of the tree
crown was based on photointerpretation of a sample of 124 trees based on orthomosaics
from November 2018 and April 2019. First, the tree crowns were manually delineated in
the QGIS 3.0 software. Then, the area (Shp) corresponding to the orthogonal projection of
the tree crown to the ground was automatically calculated with QGIS 3.0 software.
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2.2.10. Tree Loss Detection and Validation

Tree loss detection is based on the analysis of difference in vegetation heights (∆MNH)
and based on the criteria of tree height and tree crown area. The change in vegetation
height is calculated using Equation (3):

∆MNH = MNHt2 −MNHt1 (3)

where t1 and t2 represent the two selected acquisition dates (November 2018 and April
2019, respectively).

Negative values correspond to vegetation losses. Thus, the average value of the tree
crown area allows us to discriminate between what corresponds to tree losses.

The tree height distribution maps in April 2019 and tree loss during the period of
November 2018 to April 2019 were evaluated based on the photointerpretation of a sample
of 511 observation points categorized as tree loss (total of 107 points), stable forest (total of
200 points), and stable nonforest (total of 204 points). Accuracy indicators, such as overall
accuracy and kappa index, were finally calculated.

3. Results
3.1. Quality of Photogrammetric Processing

The aerial image orthorectification and mosaicking process involved a total of 33 flights,
with three diachronic flights (November 2018, January 2019, and April 2019) for each of the
11 study sites. A total of 33 orthomosaics and DSMs were produced with different levels
of satisfaction. The proportions of correctly aligned images and reprojection errors from
the Photoscan software ranged from 59% to 100% and from 0.551 pixels to 0.813 pixels
across all study sites (Table 2). The proportion of orthomosaics not retained in this study
for reasons of poor quality (blurred images, presence of areas without data, artifacts, etc.)
was 24% (i.e., 8 out of the 33 orthomosaics produced). Following this evaluation, Sites 1, 6,
8, 9, and 11 were selected because their orthomosaics and DSMs were of good quality and
were available for both November 2018 and April 2019.
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Table 2. Evaluation of photogrammetric processing (A: percentage of aerial images correctly aligned;
E: aerial image reprojection errors in pixels).

Name
November 2018 April 2019

Quality A E Quality A E

Site 1 Good 100 0.580 Good 97 0.551
Site 2 Good 100 0.718 Poor 100 0.739
Site 3 Poor 100 0.738 Good 100 0.717
Site 4 Poor 69 0.636 Poor 73 0.646
Site 5 Good 95 0.689 Poor 59 0.653
Site 6 Good 100 0.799 Good 100 0.625
Site 7 Good 97 0.626 Poor 75 0.622
Site 8 Good 100 0.648 Good 100 0.649
Site 9 Good 98 0.655 Good 98 0.599

Site 10 Poor 100 0.680 Good 100 0.649
Site 11 Good 100 0.614 Good 100 0.615

3.2. Orthomosaics, Digital Surface Models, and Digital Terrain Models

The orthomosaics obtained at each of the study sites after photogrammetric process-
ing (Figure 8A) were exported from the Photoscan software with a spatial resolution of
6 cm/pixel. The digital surface models (Figure 8B,C) were exported with a resolution of
12 cm/pixel. Ecologically, these orthomosaics and DSMs provide information on the state
of vegetation (degraded or not, heavily cleared or not, cultivated or not, etc.). At Site 1,
elevations varying from 145 m to 227 m in November 2018 and from 142 m to 229 m in
April 2019 show the anthropization of the forest landscape. This degradation of the forest
landscape can be seen on orthomosaics through both blue and green areas corresponding
to forest clearing and cultivation. These areas are more accentuated in the western and
central parts of Site 1.
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In Site 6, these clearings are more accentuated in the northeastern and southwestern
areas. In Site 8, analysis shows that the forest is less degraded compared with other sites.
Slight degradation is observed in the southeastern extremity of the site. Finally, Sites 9 and
11 are the most degraded sites with significant vegetation clearing.
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The DTM (Figure 9) allows for a better appreciation of the topography. It indicates a
topography that varies from 142 m to 179 m in Site 1 (87 ha), representing a difference in
level of 37 m. In Site 6 (94 ha), the topography varies from 136 m to 190 m, representing a
difference in level of 54 m. On Site 8 (97 ha), the topography varies from 167 m to 222 m,
representing a difference in level of 55 m. On Site 9 (102 ha), the topography varies from
131 m to 181 m, representing a difference in level of 50 m. Finally, Site 11, with a surface
area of 121 ha, has a topography varying from 145 m to 199 m, representing a difference in
level of 54 m.
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To ensure the quality of the digital terrain models, we compared the DTMs generated
from the two different dates selected in the study. As an example, Figure 10 shows elevation
profiles that show that the DTMs are comparable from one date to another. However, there
is an error in z. Since we subsequently computed the digital elevation model from the DSM
and DTM, the effect of this error is significantly mitigated [37].
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Drones 2022, 6, 83 11 of 19

3.3. Distribution of Vegetation Heights

The distribution of vegetation heights represented by digital height models (DHM)
reveals a maximum vegetation height of 65.06 m in November 2018 and 64.07 m in April
2019 for all the surveyed sites. The average vegetation height ranged from 16.72 m to
21.74 m in November 2018 and from 16.89 m to 22.15 m in April 2019 (Table 3). With an
estimated height of 21.74 m in November 2018 and 22.15 m in April 2019, vegetation at Site 6
is the largest among all surveyed sites, as evidenced by the spatial distribution of vegetation
heights (Figure 11). The histograms of vegetation height frequencies in November 2018 and
April 2019 (Figure 12) generally show two peaks across all sites that reflect the presence
of two types of vegetation: low vegetation with a height of less than 25 m and dominant
vegetation with a height greater than 25 m. The low vegetation is made up of cocoa tree
crops and grassy recrusts and natural regeneration. The dominant vegetation corresponds
to all the trees constituting the forest. However, a third peak observed in April 2019 could
signal the start of a weed control operation in April 2019.

Table 3. Statistical distribution of vegetation heights at each study site between November 2018 and
April 2019.

Name
November 2018 April 2019

Maximum
Height (m) Average (m) Standard

Deviation (m)
Maximum
Height (m) Average (m) Standard

Deviation (m)

Site 1 57.05 16.72 12.73 59.52 16.89 12.59
Site 6 59.59 21.74 12.63 59.62 22.15 12.76
Site 8 61.29 17.96 12.15 61.16 18.18 12.06
Site 9 65.06 17.51 13.12 64.07 17.07 13.10

Site 11 63.41 17.75 13.66 62.69 17.56 13.66
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Figure 12. Vegetation height frequency distribution histograms for Sites 1, 6, 8, 9, and 11 in November
2018 and April 2019.

3.4. Distribution of Tree Heights

The trees here correspond to vegetation with a minimum height of 25 m. Thus, the
distribution of tree heights (Table 4) shows that the maximum height of trees across all sites
is 65.06 m in November 2018 and 64.07 m in April 2019. The trees have an average height
that ranges from 34.29 m to 37.00 m in November 2018 and from 34.63 m to 36.88 m in April
2019. The tallest trees are over 35 m tall and are found in Sites 9 and 11.

Table 4. Statistical distribution of tree heights at each site between November 2018 and April 2019
(minimum height of 25 m).

Name
November 2018 April 2019

Maximum
Height (m) Average (m) Standard

Deviation (m)
Maximum
Height (m) Average (m) Standard

Deviation (m)

Site 1 57.05 34.83 6.04 59.52 35.30 6.34
Site 6 59.59 34.92 6.26 59.62 35.38 6.38
Site 8 61.29 34.29 6.27 61.16 34.63 6.40
Site 9 65.06 35.43 7.21 64,07 35.55 7.15

Site 11 63.41 37.00 7.14 62.69 36.88 7.05

3.5. Tree Crown Area

A total of 124 tree crown trimming polygons were delineated (Figure 13). Tree crown
area values ranged from 7 m2 to 838 m2, with an average of 152 m2 across the study sites
(Table 5). This average tree crown size corresponds approximately to the pixel size of a
Sentinel sensor at a 10 m spatial resolution.

3.6. Detection of Tree Losses by Difference in Vegetation Heights

Tree loss detection is performed based on the difference in vegetation heights (Delta
DHM) between November 2018 and April 2019, the minimum tree height (25 m), and the
average tree crown area (152 m2). Negative values represent tree losses that correspond
to new clearing or tree burning (Figure 14). The identification of tree losses is illustrated
on Figure 15. At Site 1, there are a minimum of 19 tree losses associated with an area of
0.4 ha between November 2018 and April 2019. At Site 6, there are a minimum of 16 tree
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losses associated with an area of 0.2 ha. At Site 8, there are a minimum of 17 tree losses
associated with an area of 0.3 ha. At Site 9, there are a minimum of 28 tree losses associated
with an area of 0.5 ha. As for Site 11, there are at least 27 tree losses associated with an area
of 0.6 ha.

Table 5. Tree crown area statistics for all study sites.

Name Number of
Polygons

Minimum Area
(m2)

Maximum Area
(m2)

Average Surface
Area (m2)

Site 1 22 26 373 166
Site 6 31 23 451 127
Site 8 20 7 487 164
Site 9 27 12 385 113
Site 11 24 25 838 206
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April 2019.

3.7. Quality Assessment of Maps

The quality assessment of all the maps reveals that the overall accuracy (OA) is 97%
and the kappa index is 0.95 (Table 6). The user accuracies are estimated at 93% for tree loss,
98% for stable forest, and 99% for stable nonforest. Producer accuracies are estimated at
98% for tree loss, 97% for stable forest, and 97% for stable nonforest.

Table 6. Confusion matrix and accuracies for the set of tree height distribution maps in April 2019
and tree loss over the period of November 2018–April 2019.

Tree Loss StableForest NonstableForest Total User’s Accuracy CommissionError

Tree loss 99 5 3 107 0.93 0.007
Stable forest 1 196 3 200 0.98 0.02

Nonstable forest 1 2 201 204 0.99 0.01
Total 101 203 207 511

Producer’s accuracy 0.98 0.97 0.97 OA = 97%
Omission error 0.02 0.03 0.03 Kappa = 0.95

4. Discussion
4.1. Clearing Timing in Classified Forests and Data Acquisition Strategy

Knowledge of the clearing process in classified forest was necessary for a good spa-
tiotemporal distribution of the drone acquisition campaigns (Figure 16). Clearing is pro-
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gressive and discrete and is characterized by an anthropic cocoa farming process that can
be subdivided into four (4) stages.
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Figure 16. Clearing timing in the classified forests and data acquisition strategy. (A) Forest that
appears to be intact but is already sown with cocoa beans. (B) Appearance of cocoa seedlings and
felling of the undergrowth. (C) Burning of the base of large trees. (D) Falling or felling of standing
dead trees so that cocoa trees grow better.

From May to August: illegal farmers either broadcast cocoa beans into the forest
understory or directly remove the forest understory before direct seeding of beans under
the canopy. The first approach is becoming more and more prevalent in the Bossématié
classified forest because it is almost impossible to notice the presence of cocoa crops at
this stage, whereas in the second case, the ecoguards quickly identify the presence of
illegal activities.

From August to September: Once the seedlings appear (2 to 3 months later), they
proceed to cut down the undergrowth, leaving the cocoa crop in sight. During this phase,
which takes place during the short dry season, the seedlings are maintained. Until then, it
is impossible to detect such a disturbance via optical remote sensing (this is the beginning
of forest degradation).

From September to October: As the rains pick up again, illegal farmers replace dead
cocoa plants with new seedlings and increase the area of their fields.

November to April: Illegal farmers set fire to the base of large trees to cause their
death; this is the beginning of tree losses. During this phase which last all along the dry
season, it becomes possible to detect such disturbances via optical remote sensing. The
trees first lose their foliage, allowing a good amount of light to penetrate for crop growth,
before falling (windfall) under the effect of the wind or being cut down with a chainsaw.
The resulting cleared areas are usually considerable with a significant loss of biodiversity.
It is therefore during this period that overflights must be intensified to detect the burning
of the first standing trees and to alert the public to send deterrent patrols.

4.2. Quality of Photogrammetric Models and Maps

The use of the Mavic Pro drone allowed us to map the dynamics of clearings in
the Bossématié classified forest on test sites following a methodology already proven in
several past studies [28,32,38]. The results of the photogrammetric processing demonstrate
that the selected flight altitude and image overlap levels avoid the difficulties very often
encountered in the aerial image mosaicking phase, especially in forest areas [26,28]. The
quality of the orthomosaics and of the selected digital surface models (reprojection errors
between 0.551 pixels and 0.813 pixels) is sufficient to assess the changes in the forest
surface with good accuracy. Indeed, refs. [19,39] have shown that errors of 1 to 2 pixels are
acceptable. These systematic errors in orthomosaics and digital surface models originate
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from the instability of the mini-UAVs and the distortion of the digital cameras used [40].
However, image overlap levels in this study (65% and 75%, frontal and lateral) could
be increased to improve the quality of orthomosaics. Indeed, several studies show high
levels of overlap, such as [28] (90% front overlap), [32] (80% front overlap), and [41] (90%
front overlap).

In terms of the production of the set of maps of tree height distribution (April 2019)
and tree loss (November 2018–April 2019) in the Bossématié classified forest, the validation
reveals an overall accuracy of 97% and a kappa coefficient of 0.95. This indicates that these
maps have satisfactory quality levels [42]. This shows the effectiveness of the method used
in the detection of losses using aerial images acquired by drone.

4.3. Advantages and Methodological Limitations

In terms of the choice of drone, the small size of the drone used (19.9 cm× 8.3 cm× 8.3 cm)
allowed us to transport and launch it from any location in the forest while avoiding trees.
Compared with other acquisition platforms, such as satellites or airplanes, the drone
used allowed us to acquire images at a higher resolution with a lower operating cost [43].
Although the drone can be affected by cloud cover or fog like other optical sensors, it
offered us the flexibility to avoid these. However, the main limitation with the drone used
is the size of the area to be covered. Indeed, although, in most cases, the forest areas to be
covered easily exceed 1 km2 (i.e., 100 ha), it should be noted that the flight capacity of a
multirotor drone rarely exceeds 1 to 2 h of flight. This flight endurance being the greatest
limiting factor for forestry use, we must accept that the use of a drone will remain a tool for
analysis at the local scale only [16].

In terms of tree crown delineation, this method could be tedious due to manual
delineation. Given the number of trees in a forest, this is probably not a viable solution for
a national-scale forest preservation project.

In terms of geometric correction of the digital surface models, we propose frame-to-
frame georeferencing to reduce errors. The accuracy of the photogrammetric data could
have been improved by using ground control points [41].

4.4. Drone versus Sentinel Sensors and Perspectives

The Sentinel-1 and 2 satellite constellations in operation provide multispectral imagery
at a very high spatial resolution of 10 m. This opens new possibilities for the mapping and
multiple annual monitoring of land use and land cover [12,44]. As shown in Figure 17,
these individual sensors may have different potentials for monitoring forest ecosystems.
Sentinel-1 radar images do not offer the possibility to distinguish clearings in the middle of
a tropical forest, as the radar signal is saturated. Sentinel-2 images can be used to monitor
large areas of forest clearing, but their quality is dependent on cloud cover, which is almost
always present in tropical forests. Aerial images acquired by drone have strong potential for
monitoring forest disturbances. The combination of these three systems should be used in
the estimation of forest degradation activities in the reducing emissions from deforestation
and forest degradation (REDD+) project.

The drone-based approach discussed in this study can be improved by integrating
Lidar solutions and solutions related to the new generation of planet satellites. Indeed,
despite the constraints related to cloud cover, the daily revisit rate of planet microsatellites
allows us to obtain cloud-free mosaics with a spatial resolution of 3 m to 5 m [45]. The use
of planet images would allow for the refinement of forest disturbance early detection using
drone data. Lidar solutions should be tested for the early detection of forest understory
loss [46]. This is a major limitation of current remote sensing tools and methods to detect
cocoa plots under shade. This would allow for intervention on the ground in the early
stages of illegal clearings by cocoa farmers infiltrating classified forests and protected areas.
The technologies mentioned above would allow Côte d’Ivoire to have innovative tools
adapted to its agroforestry context and for the implementation of its current ambitious
sustainable development objectives.
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5. Conclusions

This study aimed at the early detection of tree losses in the forests of Côte d’Ivoire
using aerial photographs taken by drones. The methodological approach was based on
the use of aerial images acquired by drones (spatial resolution 6 to 12 cm) to assess tree
losses in the classified forest of Bossématié. The choice of this classified forest is justified by
the low annual deforestation rate recorded between 2016 and 2019, which is estimated at
0.35%. This approach allowed us to evaluate tree losses in this relatively well-preserved
classified forest subjected to strong anthropic pressures with satisfactory accuracy. Indeed,
it allowed for the detection of a minimum of 107 tree losses corresponding to a clearing
area of 2 ha on all sites studied in the classified forest of Bossématié during the period from
November 2018 to April 2019 with a satisfactory overall accuracy of 97%. Therefore, this
study shows the interest in using drones in the management and monitoring of classified
forests and protected areas in Côte d’Ivoire. The drone is therefore a precise tool whose
capabilities are constantly improving. In addition to its proven value in terms of early
detection of the first standing tree burns, regular drone overflights are also proving to be a
strong deterrent to cocoa farmers infiltrating protected forests, who realize that the forest is
under close surveillance.

The results of this work must be integrated into the development and management
plans of classified forests and protected areas. Indeed, the use of this spatial tool (the
drone) could contribute to the good management of these protected areas through better
monitoring of the land (fine and regular mapping, detection of forest disturbances, and
early warning of clearings).
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