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Assessment of soil organic carbon stocks (SOCs) is highly relevant considering that SOCs is the central driver in
climate change mitigation and soil fertility. In Madagascar, a first attempt at mapping SOCs on a national scale
was undertaken in 2009 with previous soil data. Advanced research on soil carbon mapping on a global scale is
required to enable better land use decisions. This study aims to (i) evaluate the drivers of soil organic carbon
(SOC) storage in the first 30 cm soil layer on a national scale from spatially explicit explanatory environmental
variables and a recent soil database and (ii) update the spatial distribution of SOCs at this scale through digital
mapping. A spatial model was established using randomForest, a decision tree algorithm and based on 10
pedoclimatic, topographic, and vegetation variables. The model was developed with 1993 available soil plot data
(collected from 2010 to 2015) and their environmental information (“VALSOL-Madagascar” database). These data
were divided into two sets: a first set (n= 835) used formodel calibration and a second set (n= 358) for external
validation. Results showed that mean annual temperature (MAT, °C), mean annual precipitation (MAP, mm), ele-
vation (m) and Normalized Difference Vegetation Index (NDVI) were the most important predictors of SOCs. The
retained prediction model had a Root Mean Squared Error (RMSE) equal to 25.8 MgC·ha−1. The predicted SOCs
fromfittedmodels ranged from28 to 198MgC·ha−1with total SOCs to 4137 TgC. Depending on soil type, Ferralsols
(35 to 165 MgC·ha−1) and Andosols (48 to 198 MgC·ha−1) had relevant results related to the number of soil
profiles (n = 856 and 171 respectively). Despite the need for in-depth analysis, the model and map produced in
the present study has greatly improved our knowledge of the spatial distribution of SOCs in Madagascar and
reduceduncertainty compared to the formermap. Thismapprovides newperspectives in sustainable landmanage-
ment in Madagascar.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Soils provide numerous ecosystem services but changes in land use
and climate have affected their properties and functions (Millennium
Ecosystem Assessment, 2005). Among these services, soil contains the
largest pool of organic carbon in terrestrial ecosystems including forests,
grasslands, agroecosystems and others (Batjes, 1996; Bolin et al., 2001;
Matsuura et al., 2012; White et al., 2000).
rbon on a national scale: Towards an improved and updated map of
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Soil organic carbon (SOC) maintains soil health and productivity of
plant resources. It provides a primary source of nutrients for plants,
helps particle aggregation and porosity promoting soil structure, in-
creases water storage capacity and availability for plants, protects soil
from erosion and provides a habitat for soil biota (Rossel et al., 2016).
Carbon sequestration in soils can improve the quality and productivity
of the soil to sustain food production and simultaneouslymitigate emis-
sions of greenhouse gases (GHG). Thus, soils have a huge potential for
either sequestering or releasing carbon into the atmosphere (Kutsch
et al., 2009).

Better understanding of ecosystem carbon balance is crucial for
predicting carbon-climate feedback and guiding the implementation
of mitigation policies (Fang et al., 2014; McKinley et al., 2011; Pan et
al., 2011). Information about soil properties such as soil organic carbon
stocks (SOCs) could be very helpful in addressing climatic and environ-
mental degradation issues and justifying SOCs mapping.

Digital SoilMapping techniques can potentially produce information
about soil properties that are not currently available (Hempel et al.,
2005; Legros, 2006). Moreover, they improve the consistency, accuracy,
detail and speed at which soil survey information is produced. These
techniques can be used both to update existing soil survey information
and create information in unmapped areas (Lagacherie, 2007). In addi-
tion, a spatial soil information system created by a numerical model
based on soil information and related environmental variables could ac-
count for spatial and temporal variations in soil properties (Lagacherie
and McBratney, 2007).

InMadagascar, several attempts weremade atmapping SOCs on dif-
ferent scales. Locally, Razakamanarivo et al. (2011)mapped SOCs for the
first 30 cm depth in eucalyptus plantations in the central highlands of
Madagascar by using multiple regression approaches. Grinand et al.
(2009) produced a SOCs map for the 30 cm top soil layer according to
land uses and soil information at national scale. The authors used a
georeferenced soil database named VALSOL-Madagascar (Beaudou and
Le Martret, 2004) which gathered soil inventory data collected from
1946 to 1979. This first evaluation of organic carbon resource in Mada-
gascar is however at coarse resolution (1 km) and display SOCs levels
that were observed more than thirty years ago. Considering the high
rate of land use change especially related to deforestation (Harper et
al., 2007) and nonsustainable agricultural practices (Vagen et al.,
2006), digital SOCs mapping is urgently needed in Madagascar, in
order to reduce uncertainty at large scale, whilst improving the spatial
resolution of the estimates. The map uncertainties are related to small
sample size, uneven plot location, errors generated from laboratory
analysis and land cover mapping from remote sensing. In 2015, the
VALSOL-Madagascar database was updated and ongoing research is fo-
cusing on improving SOCs maps on different scales by testing various
digital spatial models (e.g.: randomForest, linear regressionmodel, linear
mixed effects models) combining large spatially-explicit environmental
database with the most recent soil data.

The present study aimed to produce a national SOCs map using the
most recent soil information and relevant covariates explaining the
SOCs distribution. The main objectives of this paper were (i) to identify
relevant factors controlling SOCs (0–30 cmdepth) (ii) to produce an im-
proved national SOCs map by using an updated soil database and digital
soil mapping techniques.

2. Materials and methods

2.1. Study area

Madagascar is an island located in Eastern Africa in the Indian Ocean
(between11°57 and 25°29 South and 43°14 and 50°27 East)with a total
surface area of 587,000 km2. It has a unimodal tropical climate charac-
terized by a wide climate gradients and vegetation changes (Styger et
al., 2009). With an average of 7 dry season months, precipitation
range from 500 to 3200 mm and temperature from 13 to 27 °C.
Please cite this article as: Ramifehiarivo, N., et al., Mapping soil organic c
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According to the soilmap produced byDelenne and Pelletier (1980),
Madagascar soil cover includes 11 soil types. Dominant soil types are
Ferrallitic soils (Ferrasols, FAO, 2014) and Ferruginous soils (Ferric
Luvisols, FAO, 2014) covering over 46% and 28% of national area respec-
tively (Grinand et al., 2009) (Fig. 1).

2.2. Soil organic carbon stock database

In this study, 1193 soil plots dated from2010 till 2015were gathered
and added in the national VALSOL-Madagascar database which is the
only existing georeferenced soil database in Madagascar. These new
data come from fourteen agronomical and environmental studies con-
ducted throughout the country by LRI team and partners (Table 1).
The VALSOL-Madagascar database was first established in 1980 and in-
cludes physical and chemical data on Malagasy soils gathered from old
soil surveys carried out by the French Institute of Research for Develop-
ment (IRD, previously calledORSTOM) between1946 and 1979 (Leprun
et al., 2010). VALSOL-Madagascar is currently beingmaintained through
a close collaboration between the “Laboratoire des RadioIsotopes” (LRI)
University of Antananarivo inMadagascar and the IRD. The updated soil
database record soil information by vertical profile including geograph-
ical location, physical and chemical soil properties such as soil thickness,
soil organic carbon content, bulk density, and soil texture (clay, silt and
sand content). This available legacy soil data and information was
harmonized for each plots in order to calculate SOCs and to map spatial
distribution of SOCs in 0–30 cm depth similarly to other studies
(Bernoux et al., 2002; Martin et al., 2011; Minasny et al., 2013;
Nussbaum et al., 2014).

2.3. Calculation of soil organic carbon stocks

The SOCs per soil profile inMgC·ha−1were calculated using soil bulk
density methods (Chapuis-Lardy et al., 2002; Razafimbelo et al., 2008;
Razakamanarivo et al., 2011) and the carbon content was estimated
using conventional Walkley and Black (1934) methods or combined
with an alternative method using mid infrared spectroscopy (MIRS)
analysis (Reeves, 2010). The calculation for each profile with k layers
was performed as follows (Eq. (1)):

SOCs ¼
Xk

i¼1
CCi� BDi� Di� 1−CFið Þ½ � ð1Þ

where SOCs is the total amount of soil organic carbon per unit area
(MgC·ha−1), CCi is the concentration of soil organic carbon in layer i
(gC·kg−1), BDi is the bulk density (g·cm−3) of layer i, Di is the thickness
of layer i (m), and CFi is the fraction of the volume of coarse fragments
N2 mm in layer i (with 0 ≤ CFi b 1) (Batjes, 1996; Matsuura et al., 2012;
Penman et al., 2003). For each soil profile, the SOCs per unit area was
calculated for a depth of 0–30 cm (3 layers: 0–10 cm, 10-20 cm and
20–30 cm).

2.4. Collection and harmonization of spatially-explicit covariates

In order to predict SOCs, we considered potential, easy access and
commonly used explanatory spatial variables (Table 2) (Grunwald,
2009; McBratney et al., 2003), that were either categorical dataset
such as soil map and land-cover map, or continuous such as climate,
topography, tree cover and satellite data.

Each available spatial data described below, were projected in the
same spatial reference system (WGS84/UTM 38S) and resampled at
30 m × 30 m resolution which is the ground resolution considered
appropriate for 1/100.000 scale mapping purpose (Legros, 2006).
Explanatory variable values were extracted on each soil profile using
GIS tools (QGIS software 2.6., 2014).
arbon on a national scale: Towards an improved and updated map of
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Fig. 1. Soil distribution in Madagascar (Delenne and Pelletier, 1980) with location of the 1193 soil profiles in VALSOL-Madagascar database.

Table 1
Descriptive statistics of SOCs (MgC·ha−1) in VALSOL-Madagascar and Grinand et al. (2009) according to soil type by Delenne and Pelletier (1980) and corresponding to FAO (2014).

Soil type Soil type according to FAO (2014) VALSOL-Madagascar Grinand et al. (2009)
n Mean Min Max CV n Mean Min Max CV

1 Ferrallitic soils Ferralsols 856 88.3 16.8 232.8 0.39 89 61.3 5 163.2 0.62
2 Andosols Andosols 171 117.5 22.7 225.7 0.45 4 90.8 62.1 120.3 0.36
3 Ferruginous soils Ferric Luvisols 57 66.5 16.6 209.2 0.59 50 33.6 3.6 86.2 0.63
4 Hydromorphic soils Fluvisols/histosols 51 87.6 18.8 177.9 0.34 40 75.9 9.9 161.1 0.49
5 Lithosols Lithic Leptosols 44 82.7 13.7 157.6 0.48 4 33.6 21.4 52.5 0.40
6 Moderately developed soils Cambisols 7 43.3 16.8 55.2 0.31 33 53.2 12.3 198.8 0.76
7 Podzolic soils and podzols Podzols 3 52.6 18.8 78.9 0.58 1 66.6
8 Vertisols Vertisols 2 45.1 41.5 48.8 0.12 7 47.7 18.1 80.4 0.52
9 Fersiallitic soils Alisols/nitisols 1 46.0 – – – 8 32.5 13.1 74.6 0.63
10 Bare rock – 1 49.2 – – –
11 Lithic raw mineral soils Regosols/leptosols/arenosols – – – – 12 18.8 1.2 46.1 0.69
Total 1193 90.7 13.7 232.8 0.44 279 1.2 1.2 198.8 –

3N. Ramifehiarivo et al. / Geoderma Regional xxx (2016) xxx–xxx

Please cite this article as: Ramifehiarivo, N., et al., Mapping soil organic carbon on a national scale: Towards an improved and updated map of
Madagascar, (2016), http://dx.doi.org/10.1016/j.geodrs.2016.12.002

http://dx.doi.org/10.1016/j.geodrs.2016.12.002


Table 2
Characteristics and statistics of SOCs of predictor variables.

Type Name (code name) Unit Type Mean Min. Max.

Topography data Elevation (Elevation) m Cont. 887 11 2121
Slope (Slope) % Cont. 9.23 0.11 37.1

Climate data Mean Annual Precipitation (MAP) mm Cont. 1586 554 3203
Mean Annual Temperature (MAT) °C Cont. 20.2 13.2 27

Satellite derived data Normalized Difference Vegetation Index (NDVI) Cont. 0.56 −0.08 0.97
Normalized Difference Water Index (NDWI) Cont. 0.07 −0.37 0.43
Normalized InfraRed Index (NIRI) Cont. −0.07 −0.43 −0.07

Vegetation data Tree cover map (Tree_cover) % Cont. 60.13 0 100
Land cover (Land_cover) Disc 9 classesa

Soil map Soil type (Soil) Disc. 11 classesb

Cont.: continuous/quantitative data Disc.: categorical data.
a Cultivated areas, North Western dry forest, Wooded grassland/bushland mosaic, Grassland/wooded grassland mosaic, Western dry forest, Eastern humid forest, South Western dry

spiny forest/thicket, degraded eastern humid forest, South western subhumid forest.
b Ferrallitic soils, Ferruginous soils, Moderaltely developed soils, Bare rock, Lithosols, Lithic raw mineral soils, Fersiallitic soils, Hydromorhic soils, Podzolic soils and podzols, Vertisols,

Andosol.
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2.4.1. National soil map
Delenne and Pelletier (1980) soil map is still the most national soil

map and has been used in the present study (Fig. 1). It was developed
using a modified classification of French Commission of Soil Science
and Soil Mapping (CPCS, 1967) and adapted to the local context
(Grinand et al., 2009). The classification system includes 11 soil types
based on detailed descriptions of soil formation processes and profile
characters (Duchaufour, 1998). The most extensive area according to
soil type (74%) is occupied by Ferralsols (Ferrallitic soils) and Ferric
Luvisols (Ferruginous soils), other cartographic units represent b10%
of the area of the country. Table 1 presents SOCs data distribution ac-
cording to the previous soil map (Delenne and Pelletier, 1980) with
the corresponding soil type following the Word Reference database
for soil resources (FAO, 2014).

2.4.2. Land use and land cover
Vegetation data includes two sources of dataset. The first is a land-

cover map (Land_cover) showing vegetation distribution derived from
MODIS and Landsat 7 satellites at 30 m × 30 m of spatial resolution
(Moat and Smith, 2007). The second is the Tree covermap (Tree_Cover)
representing the percentage of tree cover within a 30 m pixel for the
year 2000 derived from Landsat images (Hansen et al., 2013).

2.4.3. Climate
The climate dataset considered were: (i) mean annual precipitation

(MAP, mm) and (ii) mean annual temperature (MAT, °C). They were
derived from the WorldClim database which gather high resolution
(1 km) climate dataset worldwide (Hijmans et al., 2005).

2.4.4. Topography
Topography dataset came from the digital elevationmodel provided

by the French national geographic institute (IGN). Topographic data
with a resolution of 90 m × 90 m is: Elevation (m) (Fig. 1), and Slope
(%). Slope data was calculated on QGIS software (QGIS, 2014) using
the elevation map (CNES, 2014).

2.4.5. Other soil and vegetation dataset
We used the 2014 Landsat cloud-free images composite (Hansen et

al., 2013) to derive the soil and vegetation indexes: (i) Normalized
Difference Vegetation Index (NDVI) map (Eq. (2)), (ii) Normalized
InfraRed Index (NIRI) map (Eq. (3)) and (iii) Normalized Difference
Water Index (NDWI) (Eq. (4)) by Gao (1996). NDVI was used as a
potential indicator for growth and vigour of vegetation (Rouse et al.,
1974). As NDVI saturates for vegetation with high greenness, NIRI and
NDWI were also used. NIRI and NDWI are less prone to saturation
(Mustafa et al., 2010) hence more appropriate for the humid tropical
forest in the Eastern part of the island. They were considered also as a
Please cite this article as: Ramifehiarivo, N., et al., Mapping soil organic c
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proxy of soil water content and ferrous oxide content which are strong
indicator of soil types. Hereafter the formulas whichwere used to calcu-
late these indices:

NDVI ¼ NIR−Rð Þ= NIR þ Rð Þ ð2Þ

NIRI ¼ R−NIRð Þ= SWIRþNIRð Þ ð3Þ

NDWI ¼ NIR−SWIRð Þ= SWIR þNIRð Þ ð4Þ

whereNIR is theNear infrared band, R the Red band, SWIR the Shortwave
Infrared band and G the Green band.

2.5. Soil organic carbon modelling

Spatially explicit SOCs estimation was developed using the
randomForest (RF, Breiman, 2001) algorithm. RF is a machine-learning
algorithm that extends standard classification and regression tree
(CART) methods by creating a collection of small classification trees
(Wei et al., 2010). Unlike traditional CART analyses, the fit of each tree
is assessed using randomly selected cases (1/3 of the data), which are
withheld during its construction (out-of-bag or OOB sample).

The application of RF in the field of soil science is relatively recent
but it is a potentially powerful approach for modelling in various soil-
landscape regions and scales (Grimm et al., 2008; Grinand et al., 2017;
Kim et al., 2012; Vagen et al., 2016). This model was also proved to pro-
vide accurate soil properties at continental scale (Hengl et al., 2015).

Thewhole 1193 SOCs datasetwere randomly divided into 2 sets: one
for calibration (70% of the population n= 835) and one set for external
validation (30% of the population n=358). Once themodelwas created
and validated, it was applied to the whole study area for the
spatialisation.

RF modelling was performed using the randomForest package in R
software (R.3.2.2).

2.6. Model evaluation

Thequality of themodelwas evaluated bypredicting the SOCs values
for the 30% sample data which is not used in the mapping exercise and
by computing the R-squared (R2, coefficient of determination) and the
RMSE (Root Mean Squared Error (MgC·ha−1)). The more R2 is close
to 1 and the lower RMSE is, the better and more robust the model is
(Delmas et al., 2015; Hastie et al., 2009; Suuster et al., 2012). For this
study, all of the variables were input for the randomForest model.

RMSE was calculated as follows (Eq. (5)).

RMSE ¼ √∑ di−pið Þ2=n
h i

ð5Þ
arbon on a national scale: Towards an improved and updated map of
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Fig. 2. External validation procedure results considering our best fit model.

Fig. 3. Relative importance of variables.
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where n was the number of observations in the external validation
dataset, di was the observed SOCs value, pi was the predicted SOCs value.

2.7. Relative importance of variables

RF provides a mean to assess the relative importance of predictors
using two differentmetrics. Here, we used the IncreasedMean Standard
Error (%IncMSE). This metric is obtained by computing the difference
between theOOB error of the calibrated treemodel and after permuting
each predictor variable (~random model), averaged and normalized
over all the trees.

The most relevant variables in the model were further analysed
using the VSURF package (Variable Selected Using randomForests). It
is achieved by gradually adding variables to the model and picking the
version of the model with the lowest Out Of Bag error (Breiman,
2001). The VSURF package returns two subsets of variables: the first is
a subset of important variables including some redundancy which can
be relevant for interpretation and the second is a smaller subset corre-
sponding to a version of the model that tries to avoid redundancy and
focuses more closely on the prediction objective (Genuer et al., 2014).

2.8. Verification of the accuracy of the map

The SOCs map produced in the present was compared to the previ-
ous SOCs map established by Grinand et al. (2009) and compared with
reference dataset. We analysed the (i) SOCs mean and range per soil
type at country level, (ii) the overall SOCs amount computing the SOCs
mean and total pixel area, and (iii) the SOC distribution and quality of
each map. The latter was carried out at a local scale with the County of
Didy, Ambatondrazaka District in the Eastern region of Madagascar.
This county was selected for how representativeness of its SOCs data
was when compared to the average number for other counties. In
order to test the accuracy of the newly produced map compared to
the oldest available one, 1365 random points was created in this area
by using QGIS, and the values of the prediction of each map was com-
pared. Also, the limit of the produced map was verified by considering:
the distribution of predicted pixel according to SOCs values, the used
resolution of spatial predictor variables, and the representativeness of
sampling points in time and in space.

3. Results

3.1. Spatial model

The best fit model obtained showed a R2 = 0.59 and a RMSE =
25.8 MgC·ha−1 (Fig. 2). This model tends to underestimate SOCs values
higher than 150 MgC·ha−1 and overestimate SOCs values below
50 MgC·ha−1 (Fig. 2).

According to the VSURF package all predictive variables were impor-
tant for the model's construction, but the most relevant, with the
highest relative importance index (%IncMSE) were: MAP, Elevation,
MAT and NDVI. The %IncMSE of MAP-MAT-Elevation and NDVI were
741-712-693 and 327 respectively; which is higher than the %IncMSE
values of the other factors such as NIRI-NDWI-Soil-Tree cover-Land
cover and Slope (300-294-233-220-186 and 150 respectively) (Fig. 3).

3.2. Digital SOCs maps and their variability

A map of SOCs in the first 30 cm soil layer at national level was pro-
duced by using the best fit model (Fig. 4 and Table 3). SOCs values from
the produced map ranged from 28.3 to 197.6 MgC·ha−1. For the whole
country, the SOCs total were 4137 ± 1214 TgC with a variation coeffi-
cient of 0.29. There were some gaps in regions with lithic raw mineral
soils because of the inexistence of our SOCs database and 3.4% of the
area was not predicted.
Please cite this article as: Ramifehiarivo, N., et al., Mapping soil organic ca
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In any case, according to soil type (Table 3), SOCs values varied from
35.4 to 165.1 MgC·ha−1 in Ferralsol soils, 47.3 to 197.6 MgC·ha−1 in
Andosols soils, 28.3 to 144.3 MgC·ha−1 in Ferric Luvisols (Ferruginous
soil), 38.2 to 156.8 MgC·ha−1 in Fluvisols (Hydromophic soils) and
62.9 to 145.8 MgC·ha−1 in Lithosols (Lithic Leptosols). These soil types
cover 81% of the area of Madagascar and were the most represented in
our point sample dataset.

3.3. Comparison with existing SOCs map

The total of SOCs for Grinand et al. (2009) was 2583 ± 1565 TgC
(CV= 0.66), less than the results presented in this study. This differ-
ence can be explained by the lowest mean of SOCs and the lowest
number of soil profiles used for the mapping area occupied by the
Ferralsol area (mean = 61.3 MgC·ha−1, n = 89) and Ferric Luvisol
area (mean = 33.6 MgC·ha−1, n = 50) which are the dominant
soils in Madagascar (Table 1).
rbon on a national scale: Towards an improved and updated map of
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Fig. 4. SOCs (MgC·ha−1) distribution map at national scale for the first 30 cm soil layer
based on predicted SOCs obtained by the use of spatial model generated by the
randomForest algorithm.
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In the county of Didy, Fig. 5 showed that the prediction of the two
maps for the 1365 random points was different. The oldest map gave
only eight values, compared to the new map. There was also a lot of
non-predicted pixel compared to the actual maps. Grinand et al. (2009)
used the average of SOCs values for soil type and vegetation unit, and
there is no change in SOCs within the same map unit (Figs. 6 & 7). Our
predictive model computes the value of each map pixel in accordance
with the values of each variable in the regression trees.
Table 3
Descriptive statistics of SOCs (MgC·ha−1) for soil types (Delenne and Pelletier, 1980) accordin

Soil type Soil type according to FAO (2014)

1 Ferrallitic soils Ferralsols
2 Andosols Andosols
3 Ferruginous soils Ferric Luvisols
4 Hydromorphic soils Fluvisols/histosols
5 Lithosols Lithic Leptosols
6 Moderately developed soils Cambisols
7 Podzolic soils and podzols Podzols
8 Vertisols Vertisols
9 Fersiallitic soils Alisols/nitisols
10 Bare rock –
11 Lithic raw mineral soils Regosols/leptosols/arenosols
TOTAL

n as number of SOCs used on calibration model.

Please cite this article as: Ramifehiarivo, N., et al., Mapping soil organic c
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4. Discussion

4.1. Relevant predictor variables of soil organic carbon stocks

Results of the prediction method showed that the spatial distribution
of SOCs is driven by a combination of elevation, climate and vegetation
data (Fig. 3). The importance of these predictor variables differed accord-
ing to themodel. Precipitation, temperature, elevation and soil-vegetation
index largely influenced the spatial distribution of SOCs. These results
were expected, as precipitation and temperature have a strong effect on
Soil Organic Matter (SOM) decomposition (Grace et al., 2006).

Modelling of soil organic carbon by Were et al. (2016) showed that
elevation was important for predicting SOCs with other data such as
silt content and satellite band. Indeed, in tropical soils, organic matter
increases with precipitation, lower temperatures and elevation (Wang
et al., 2013). Previouswork reported that humidity and temperature de-
creased with altitude and these variables are the main factors behind
the low rate of decomposition of SOM and thus the accumulation of
SOC at higher elevation. Conversely, the speed of decomposition of or-
ganicmatter increaseswith temperature, humidity and the oxygen con-
tent of soil (Wang et al., 2010). Also, organic material in the soil is
essentially derived from residual plant and animal material due to the
action of decomposition by microbes under the influence of tempera-
ture, moisture and ambient soil conditions (Yigini and Panagos, 2014).

A study by Sreenivas et al. (2014) found that NDVI and land cover
were significant variables for predicting SOCs on a model using climate
data, NDVI, land-cover type, soil type and topography datasets (R2 =
0.86). NDVI highlighted the vegetation percentage cover and the pres-
ence of vegetation in the area (Rouse et al., 1974). SOCs result from
the balance between inputs and outputs of carbon in the soil
(Davidson and Janssens, 2006). Vegetation such as plant debris and
roots from biomass are the “inputs”, while the outputs are dominated
by CO2 flux of soil and methane (CH4). Additionally, vegetation is
strongly linked to the presence or absence of human activity in the
area. Indeed, carbonmineralization of the soil depended on the changes
in vegetation cover that are oftenmodified by human activity (Martin et
al., 2010). SOCs is usually high in natural environments and decreases
with land change (Lacoste et al., 2015).
4.2. Map prediction according to soil type

SOCs of the new national digital map (mean= 71.1 MgC·ha−1) with
variation coefficient of 29% is different compared to the values given by
Grinand et al. (2009) which used 279 soil profiles (sampled before
1973). The range was from 1.2 to 198.8 MgC·ha−1 with estimated mean
of 50.1 MgC·ha−1. This difference can be explained by the difference in
SOCs database which we used for modelling (Table 1). In this study, we
used 835 plot data from 2010 to 2015 surveys. Moreover, the minimum
g the newly produced national digital map.

n Mean Min Max CV

592 81.0 35.4 165.1 0.24
126 116.4 47.3 197.6 0.25
41 57.1 28.3 144.3 0.22
31 81.3 38.2 156.8 0.22
34 62.9 34.6 145.8 0.27
5 55.4 32.2 120.5 0.17
2 61.0 34.4 128.3 0.11
2 54.8 32.7 92.1 0.18
1 60.4 36.3 123.9 0.12
1 75.4 35.4 154.5 0.28

835 71.1 28.3 197.6 0.29
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Fig. 5. Scatterplot of SOCs predictions proposed by Grinand et al. (2009) and by ourmodel
for random points (n = 1365) in the county of Didy.
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value of Grinand et al. (2009) corresponds to lithic rawmineral soils (FAO,
2014: Regosols/leptosols/arenosols), in our case, the minimum value
comes from the SOCs givenon ferruginous soil (FAO, 2014: Ferric Luvisols)
with a minimum of 28.3 MgC·ha−1 (Mean = 57.05 MgC·ha−1).
Razafimahatratra (2011) proved that lithosols, along with arenosol are
both chemically exhausted soil types that are highly sensitive to erosion
in perhumid tropics and with a lower SOCs content than that of Ferrallitic
soils (FAO, 2014: Ferralsols;mean=80.96MgC·ha−1, Table 3). Themax-
imum value of our SOCs prediction comes from the values of andosols
Fig. 6. SOCs map for the first 30 cm layer in the county of D
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(max = 197.6 MgC·ha−1; mean = 116.4 MgC·ha−1), similarly to
Grinand et al. (2009); these values correspond to moderately developed
soils (FAO, 2014: Cambisols). Andosols have a tendency to bind organic
matter and therefore often contain much more organic materials than
other soils under similar conditions (FAO, 2014).

Considering determination according to soil type, the mean SOCs

map predicted by our model was higher than those previously deter-
mined (Grinand et al., 2009), except for podzolic soils and podzols
(FAO, 2014: Podzols) 66.6 MgC·ha−1 and 61 MgC·ha−1. Therefore,
our national model, did not predict SOCs values on lithic raw mineral
soils because of lack of SOCs values on our updated database.
4.3. Limitations

The new national map produced with our method improved the spa-
tial resolution, from 1 km for Grinand et al. (2009) (Fig. 7) to 30 m in the
new digital map (Fig. 6). We showed also that accuracy was better,
representing subtle SOCs change within the landscape. Although the spa-
tial variables have a wide range of ground resolution, the downscaling in
the finest resolution considers the gradients of the original resolutions
such as climate data (Cavazzi et al., 2013) and topographic data
(Grinand et al., 2017). For a model of SOCs with R2 of 0.65, Vagen and
Winowiecki (2013) showed that a SOCsmap at 30m resolution can assist
with soil and landscapemanagement. In addition, by using randomForest,
Hengl et al. (2015) mentioned the better performance of an improved
spatial resolution map.

According to the validation sample (Fig. 2), the main limit of the
prediction was observed when predicting high SOCs values, thus affect-
ing Ferralsols, Andosols, and hydromorphic soils (Fluvisols/histosols).
However, according Fig. 8, pixels with highest values are scarce.

By considering the representativeness of the sampling points across
the country, the range of collected data may affect the applicability of
the model in different areas (Ryan et al., 2000). The prediction of SOCs
should be improved by a good sampling design which follows a good
representation of the spatial variables dataset (Ließ et al., 2016).
idy according to the predictive model's national map.
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Fig. 7. SOCs map for the first 30 cm layer in the county of Didy according to the national map by Grinand et al. (2009).
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Another limitation could arise from difference in survey date. Most
of the data used in our study were collected within the last five years
and land use changes could have occurred between our study period
and the older period considered by the Grinand et al. (2009) study.
Also, the production of annual reference satellite cover of Madagascar
at higher resolution, using for instance SENTINEL-2 images at 10 m res-
olution freely available from 2015, could be recommended to update
the predictor variables related to satellite derived reflectance indexes.

Finally, the presence of unpredicted pixels challenged the research
to work in other areas by collecting as much detail as possible about
Fig. 8. Frequency of pixel according SOCs map.
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the physical and environmental characteristics, in particular soil type
according the Word Reference Base of soil resources (FAO, 2014) and
land use of sampling points.

5. Conclusion

This study improved the scale and accuracy of the national map of
SOCs of Madagascar for the 30 cm surface soil layer in comparison
with the one previously produced in 2009. The main innovation is the
use of an updated database of recent soil surveys and newly available
satellite data standardized at national scale. It could help to more pre-
cisely assess soil responses to environmental changes, including the as-
sessment of C storage potential that is important for mitigating climate
change, spatial distribution of SOCs and the most relevant factors
explaining SOCs distribution. This map could be easily update as new
soil data are been collected on the field and new spatial dataset are
made available. Also, it can be served as basis for soil organic change de-
tection at local and national extent. More research is needed in Mada-
gascar to assess the land use and land cover change effect on soil
organic carbon from landscape to national scale.
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