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Abstract. Allometric equations allow aboveground tree biomass and carbon stock to be
estimated from tree size. The allometric scaling theory suggests the existence of a universal
power-law relationship between tree biomass and tree diameter with a fixed scaling exponent
close to 8/3. In addition, generic empirical models, like Chave’s or Brown’s models, have been
proposed for tropical forests in America and Asia. These generic models have been used to
estimate forest biomass and carbon worldwide.

However, tree allometry depends on environmental and genetic factors that vary from
region to region. Consequently, theoretical models that include too few ecological explicative
variables or empirical generic models that have been calibrated at particular sites are unlikely
to yield accurate tree biomass estimates at other sites.

In this study, we based our analysis on a destructive sample of 481 trees in Madagascar
spiny dry and moist forests characterized by a high rate of endemism (.95%). We show that,
among the available generic allometric models, Chave’s model including diameter, height, and
wood specific gravity as explicative variables for a particular forest type (dry, moist, or wet
tropical forest) was the only one that gave accurate tree biomass estimates for Madagascar (R2

. 83%, bias , 6%), with estimates comparable to those obtained with regional allometric
models. When biomass allometric models are not available for a given forest site, this result
shows that a simple height–diameter allometry is needed to accurately estimate biomass and
carbon stock from plot inventories.

Key words: allometry; bias; biomass; carbon; Madagascar; models; REDD; scaling theory; tropical
forest; wood density.

INTRODUCTION

Tropical forests have assumed increasing importance

in international efforts to mitigate climate change

thanks to their capacity to store carbon and because

of the significant emissions caused by their destruction

(Malhi and Grace 2000, Gibbs et al. 2007). Reducing

emissions from deforestation and forest degradation

(REDD) is as a novel mechanism to create financial

rewards for countries or projects that prevent forest loss

(Ebeling and Yasue 2008). In order to quantify carbon

benefits and compensation payments through REDD,

carbon stocks in forests have to be estimated. The

Intergovernmental Panel on Climate Change (IPCC)

provides guidelines to assist countries in developing

carbon accounting methodologies. These guidelines are

organized in ‘‘tiers,’’ each tier providing successively

higher accuracy and thus potentially higher financial

returns for monitoring carbon stocks and reduced

emissions. To achieve Tier III levels of accuracy, high

resolution methods—including the use of biomass

allometric equations—are needed (Aalde et al. 2003,

IPCC 2006).

Biomass allometric models enable aboveground tree

biomass to be estimated from tree size. Such models are

based on theoretical considerations and empirical

generic studies. The allometric scaling theory postulates

the existence of a universal power-law relationship

between tree biomass and tree diameter with a fixed

scaling exponent close to 8/3 (Enquist et al. 1998, West

et al. 1999, Enquist and Niklas 2001). This value was

derived from naturally occurring fractal metabolic

networks that branch to supply all parts of living

organisms, such as the vascular system and the
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branching structure in trees (West et al. 1997). Relying

on the allometric scaling theory, several authors recently

developed regional biomass allometric models assuming

a power-law relationship between tree biomass and tree

diameter (Ketterings et al. 2001, Chojnacky 2002, Zianis

and Mencuccini 2004, Pilli et al. 2006, Navar 2009) while

discussing the existence of a truly universal value of 8/3

(2.667) for the scaling exponent. The simple power-law

relationship has also been questioned for large trees

(Niklas 1995, Chave et al. 2005) because of mechanical

and physiological limits to an increase in tree height at

large diameters. For this reason, using a power-law

relationship might lead to overestimation of biomass for

large trees. To overcome this problem, polynomial

models of degree two and three on diameter, viewed as

a reasonable generalization of the power-law model,

have been used (Brown et al. 1989, Niklas 1995, Chave

et al. 2005). The hypothesis of a unique explicative

variable based on tree size (i.e., tree diameter) to

estimate biomass has also been called into question.

Including tree height as an additional size covariate has

generally been shown to lead to far better biomass

estimates (Brown et al. 1989, Chave et al. 2005). Chave

et al. (2005) also found that environmental variables

such as precipitation and seasonality, which determine

forest type (e.g., dry, moist, and wet tropical forest),

were significant variables in predicting tree biomass. In

addition, the importance of wood density as an intrinsic

explicative variable was confirmed in several studies

(Baker et al. 2004, Chave et al. 2005, 2009, Henry et al.

2010). Although the value of the allometric scaling

theory for reliably estimating biomass in tropical forests

seems questionable, the general idea that body size (in

this case, tree size) explains much of the structural,

functional, and ecological characteristics of an organism

(e.g., tree biomass) certainly holds true. This suggests the

possibility of developing accurate generic allometric

models by using a generalization of the power-law

relationship and incorporating a limited number of

additional size, species-specific, and environmental

covariates (Brown et al. 1989, Niklas 1995, Chave et

al. 2005, Pilli et al. 2006).

Two major research efforts sought to establish such

generic empirical allometric models for tropical forests

by using large pan-continental data sets. Brown et al.

(1989) and Brown (1997) used data from Central and

South America and south and southeast Asia, and the

resulting models were updated by Pearson et al. (2005).

These models have particular relevance in the context of

REDD because they are formally recommended by the

IPCC for estimating carbon stocks in tropical forests

(Aalde et al. 2003, IPCC 2006). In the second major

study, Chave et al. (2005) used a large data set including

2412 trees from 15 countries in tropical America and

tropical Asia to develop generic allometric models.

Although data was derived from many different sites

throughout the tropical world, the best models led to

very high coefficients of determination (R2 . 99%) and

very low biases (0 , bias , 6%). This suggests that

Chave et al.’s generic models are robust and should yield
accurate results for tree biomass throughout the tropics.

Indeed, the models developed by Brown et al. and Chave
et al. have been widely used to estimate tree biomass and

carbon stocks at new sites (Blanc et al. 2009, Fox et al.
2010, Rutishauser et al. 2010). This has even been the
case for sites in Africa (Brown et al. 1989, Martin et al.

2004), even though no data from African countries was
used to estimate the parameters of either model.

Despite the apparent general validity of allometric
equations based on large data sets, trees would be

expected to present different allometric relationships
from one region to another depending on environmental

factors (e.g., soil and climate) and species functional
traits (e.g., wood density, crown architecture; Vieilledent

et al. 2010). This should prevent the use of generic
models calibrated at specific sites to estimate carbon and

biomass at other sites. To overcome this challenge, it
would be extremely useful to find an accurate universal

biomass allometric model (with a high coefficient of
determination and a low bias), incorporating a relatively

low number of size, species-specific, and environmental
covariates. The aim of our study was to identify (or

invalidate) such a model among the available generic
theoretical and empirical models.

To this end, we compared regional empirical models
with theoretical and generic empirical models to

estimate tree biomass in several sites in the spiny dry
and moist–wet forests of Madagascar. Madagascar
forests are a valuable test case for the applicability of

generic theoretical and empirical models for two
reasons. First, no African data sets have been used to

estimate parameters of existing generic allometric
models, even though Africa accounts for 30% of tropical

forest (FAO 2005). Second, Madagascar has a very high
rate of endemism (close to 96%) for tree species

(Goodman and Benstead 2005), meaning that tree
species may have different functional traits from species

in tropical America and Asia. Finally, we demonstrated
that Chave’s model including height as an additional

size covariate to tree diameter and including one
synthetic environmental factor (annual precipitation)

and one synthetic species functional trait (wood specific
gravity) was the only generic model to be particularly

robust, leading to accurate estimates of tree biomass at
new sites (R2 . 83% and bias , 6%). When biomass
allometric models are not available for a given forest

site, this result shows that a simple height–diameter
allometry is needed to accurately estimate biomass and

carbon stock from plot inventories.

MATERIAL AND METHODS

Field data

Sites and forest classification.—Data for biomass

allometric models were collected in five forest sites in
Madagascar (Appendix A and Table 1). Around the

central point of each site, we defined a buffer zone with a
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10 km radius corresponding to our prospecting area

(Appendix A). We used the classification of Plugge et al.

(2010) to categorize the five forest sites. This classifica-

tion was based on vegetation image analysis (from mod-

erate resolution imaging spectroradiometer [MODIS]),

on topographic data (from shuttle radar topography

mission [SRTM]), and on climatic data. One site (Fort

Dauphin dry) was categorized as a tropical spiny dry

forest, one site (Fandriana) was categorized as a tropical

moist forest, and one site (Fort Dauphin wet) was

categorized as a tropical wet forest. Two sites (Beala-

nana and Ivohibe) were located at the limit of the moist

and wet regions and were categorized as moist–wet

forests (Appendix A and Table 1). We consequently

decided to group the moist and wet forest sites in a single

‘‘moist–wet’’ category for the purpose of our biomass

modeling approach.

Species and tree sampling method.—In each of the five

forest sites, we identified the dominant tree species.

Trees belonging to these species to be cut down were

chosen nonrandomly, i.e., in such a way that they

spanned a large part of the absolute species diameter

range at our sites. Trees up to 54 cm D (D, tree diameter

at 1.30 m height) were cut in the moist–wet forest and

trees up to 32 cm D were cut in the spiny dry forest. For

each tree i, we measured the diameter (Di, in cm) with a

1-mm precision tape and the total height (Hi, in cm) with

a 1-cm precision tape. We chain-sawed the trees into

smaller segments and used a 0.25-kg precision scale to

weigh the total fresh aboveground biomass of the tree

including trunk, branches, and leaves (fAGBi, in kg).

Wood sampling method.—To account for the within-

tree variability of the wood physical characteristics, we

collected samples of wood at four heights in the tree.

One sample was taken at the base, one at the middle,

and one at the top of the trunk and one at the crown. As

samples of the trunk, using a chainsaw, we removed a

rectangular wood core extending from the bark to the

wood heart. As the crown sample, after selecting a

branch at random, we took a disk of wood. The green

mass of each sample s (mgr,s, in g) was measured in the

field using a 0.1-g precision scale. Wood samples were

stored in hermetically sealed plastic bags until water

content and wood specific gravity could be measured at

the laboratory.

Water content and wood specific gravity measurement

The green volume (in cm3) of the wood samples was

measured using the water displacement method. A

container capable of holding the samples was filled with

water and placed on a digital 0.01-g precision scale.

Each wood sample s was entirely submerged in the water

using a thin wire of negligible volume. The measured

mass of displaced water (in g) was equal to the volume

of the sample (Vs, in cm3) as water density was assumed

to be 1 g/cm3 at the ambient temperature in the lab

(close to 208C).

Each sample was oven-dried at 758C until a constant

mass mov,s was obtained. Using a hygrometric and

thermal balance at 1038C, we measured the mean

residual water content after drying (RWCj, in %) of 10

wood samples chosen at random for each site j. We then

computed the anhydrous mass ms of sample s from site

j;ms ¼ mov;sð1� RWCj=100Þ.
With the green volume Vs, the anhydrous mass ms, and

the water density (qwa, in g/cm3), we computed the wood

specific gravity of sample s (qs, unitless), qs¼ ms/Vs/qwa.
The water content of sample s (WCs, in %), was com-

puted using the green mass mgr,s and the anhydrous mass

ms, WCs ¼ 100(mgr,s � ms)/mgr,s. We then computed qi
and WCi the mean wood specific gravity and water con-

tent of each tree i, respectively (Williamson andWiemann

2010). We also computed the mean wood specific gravity

at the species and genus level to complete the world wood

density data base (Appendix B). Using the tree water

content (WCi ) and the fresh aboveground biomass

TABLE 1. Forest site characteristics: latitude, longitude, altitude, temperature (T ), temperature seasonality (T seas.) and
precipitation seasonality (P seas.) for the central point of the site.

Forest site, village
Latitude and
longitude

Altitude
(m)

T
(8C; 310) Min–max T seas. P (mm)

Bealanana, Analila 14.4536118 S,
49.0463898 E

1214 195 96–287 2156 1502

Ivohibe, Sakaroa 22.4391678 S,
46.9897228 E

582 213 118–291 2592 1257

Fort Dauphin wet, Beampingaratra 24.4752788 S,
46.8997228 E

469 214 114–297 2546 1293

Fort Dauphin dry, Manavy 24.9547228 S,
45.7538898 E

193 237 121–334 2941 538

Fandriana, Fiadanana 20.4544448 S,
47.6013898 E

1130 181 90–263 2580 1690

Notes: Mean temperature (T ) and range (min–max) were computed using the 12 monthly mean temperatures. T seas. was
defined as 100 times the standard deviation (SD) of the monthly mean temperatures (8C;310). P seas. was defined as the coefficient
of variation (SD/mean) of the monthly mean precipitation (in mm). Annual precipitation mean (P) and range (min–max) were
computed from the annual precipitation means for the 10 km radius prospecting area around the central point of the site. All
bioclimatic variables came from the WorldClim database (Hijmans et al. 2005). Plugge forest categories (very dry, dry, moist, and
wet forests) come from a classification based on vegetation image analysis (from MODIS, moderate resolution imaging
spectroradiometer), on topographic data (from SRTM, shuttle radar topography mission), and climatic data (Plugge et al. 2010).
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(fAGBi), we computed the dry aboveground biomass of

tree i (AGBi, in kg), AGBi¼ fAGBi(1� WCi/100).

Estimating the parameters of regional allometric models

Allometric models including a measure of tree height.—

As a follow-up of the work of Chave et al. (2005), the

first kind of model (Mada.I) assumed that tree height is

available in forest inventories. Model Mada.I linked the

tree dry biomass AGBi to the tree diameter Di, the tree

total height Hi, and the tree-wood specific gravity qi.

This model is the result of a dimensional approach: mass

(in kg) ¼ volume (m3) 3 density (kg/m3). As trees have

no regular shape (e.g., conic or cylindrical) volume has

to be derived from D, H, and associated statistical

parameters. In the same way, because real tree density is

not known (as it depends on many factors including the

distribution of leaves, hardwood, and softwood), real

tree density was estimated from wood specific gravity q
and associated statistical parameters. Two different

parameterizations were tested for this first kind of

model. The first (denoted Mada.I.1, Eq. 1) included the

three predictive variables in a Gaussian linear model.

Variables were log-transformed to avoid heteroscedas-

ticity in the data:

logðAGBiÞ ¼ b0 þ b1 logðDiÞ þ b2 logðHiÞ þ b3 logðqiÞ
þ ei; ei ; N ð0;r2Þ

ð1Þ

where b0, b1, b2, and b3 are linear model parameters, e is
the residual error term, N is the normal distribution, and

r2 is the variance of the residuals.

In the second model parameterization (denoted

Mada.I.2, Eq. 2), the compound variable qD2H was

the only predictive variable:

logðAGBiÞ ¼ b0 þ b1 logðqiD
2
i HiÞ þ ei; ei ; N ð0;r2Þ: ð2Þ

Allometric models including an estimation of tree

height.—When tree height is not available in forest

inventories, it can be estimated from tree diameter

(Brown et al. 1989, Vieilledent et al. 2010). The

estimated height can then be used with biomass

allometric models that include height as a covariate,

like model Mada.I (Brown et al. 1989, Chave et al.

2005). To test if this approach gives an accurate

estimation of tree biomass, we developed height–

diameter allometric models for the spiny dry and the

moist–wet forest in Madagascar. We supplemented data

on height and diameter obtained from felled trees with

additional data on standing trees selected at random in

each forest type. We used the Vertex-III instrument

(Haglöf Company Group, Långsele, Sweden), which

uses an ultrasonic method to measure tree height. We

collected data for 250 trees with D � 128 cm in moist–

wet forests and data for 369 trees with D � 48 cm in

spiny dry forests.

Due to the low competition for light and the fact that

scarce water resource is a key limiting factor for an

increase in tree height in the spiny dry forest, we

estimated the parameters of a biologically consistent

monomolecular model (Eq. 3) with an asymptote

denoted b0 and a constraint fixing the intercept b1 to

1.3 (H¼ 1.3 m when D¼ 0 cm). Since only information

on the diameter class of the standing trees was available

for the additional height–diameter data in the spiny dry

forest, we estimated the asymptote b0 by computing the

95% quantile of the tree heights (Fig. 1). The free shape

parameter b2 was estimated using the height–diameter

data from the felled trees (Fig. 1):

Hi ¼ b0 � ðb0 � b1Þexpð�b2DiÞ þ ei; ei ; N ð0;r2Þ: ð3Þ

For the moist–wet forest, prior knowledge of the level of

resources (strong competition for light and adequate

water resources) and field data (Fig. 1) did not support

the existence of an asymptote for the height–diameter

relationship. We thus compared polynomial models on

diameters including linear, squared, and cubic models

using Student’s t test (results not shown). Parameters for

D2 and D3 in polynomial models were not significantly

different from zero. The best model for the height–

diameter relationship in the moist–wet forest was a

simple power model (Eq. 4), indicating that for large

diameter trees, an increase in height was not limited by

mechanical or physiological constraints, as was the case

in other forest types (Niklas 1995, Chave et al. 2005):

logðHiÞ ¼ b0 þ b1 logðDiÞ þ ei; ei ; Nð0;r2Þ: ð4Þ

We then used height–diameter allometric models to

estimate the log-height of each tree i from its diameter

Di ([log(Hi )]est ¼ log[b0 � (b0 � b1)exp(�b2Di )] in the

spiny dry forest and [log(Hi )]est¼ b0þ b1 log(Di ) in the

moist–wet forest). The estimated log-height was then

used to estimate the log-AGB of each tree i using model

Mada.I.1. The overall regional empirical modeling

approach to estimate tree biomass from wood specific

gravity, diameter, and estimated height was denoted

Mada.I.1-wHD (i.e., Mada.I.1 with H–D relationship):

½logðAGBiÞ�est ¼ b0 þ b1 logðDiÞ þ b2½logðHiÞ�est

þ b3 logðqiÞ: ð5Þ

TABLE 1. Extended.

Min–max P seas.
Plugge
category

Allometry
category

No.
trees

dbh
range (cm)

1457–1548 92 moist–wet moist–wet 76 10–54

1096–1414 84 moist–wet moist–wet 90 6–36

1084–1780 67 wet moist–wet 90 9–37

524–554 75 very dry spiny dry 135 3–32

1550–2013 74 moist moist–wet 90 6–35
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Allometric models including only diameter and wood

specific gravity.—When tree height is not available in

field inventories and a height–diameter allometric model

does not exist, it is possible to use a second type of

model that defines tree dry biomass AGBi solely as a

function of tree diameter Di and tree wood specific

gravity qi. We denoted this model as Mada.II in analogy

with Chave et al. (2005). We tested a simple parameter-

ization for this second type of model (Mada.II.1),

assuming a power-law relationship between tree biomass

and diameter as postulated by the scaling theory:

logðAGBiÞ ¼ b0 þ b1 logðDiÞ þ b2 logðqiÞ
þ ei; ei ; N ð0;r2Þ: ð6Þ

The allometric scaling theory also suggests that tree

biomass is proportional to tree size with a 8/3 scaling

exponent: fAGBi¼ aD
8=3
i , with a being a normalization

constant that varies with the kind of organism con-

cerned (West et al. 1997, Enquist et al. 1998). We then

tested a second parameterization for model Mada.II

using a fixed scaling exponent equal to 8/3 for D and a

normalization constant depending on q, the wood

specific gravity (Eq. 7). We denoted this model

Mada.II.2-WBE in reference to the West, Brown, and

Enquist (WBE) model:

logðAGBiÞ ¼ b0 þ ð8=3ÞlogðDiÞ þ logðqiÞ
þ ei; ei ; Nð0;r2Þ: ð7Þ

We estimated the free parameters of the statistical

models (Eq. 1–4, 6, 7) for the spiny dry and moist–wet

forest data using the maximum likelihood approach

using the lm() function available in R software (Ihaka

and Gentleman 1996).

Comparison of regional allometric models

with generic models

We estimated tree biomass using two major existing

generic models. First, we used biomass allometric

models initially developed by Brown (Brown et al.

1989, Brown 1997) and updated in Pearson et al. (2005)

to estimate biomass from our data set. In the remainder

of the article, we refer to these models as ‘‘Brown’’

models. The equations from Pearson et al. (2005)

included only D as an explicative size variable. One

equation was given by forest type with the classification

based on annual precipitation (P, in mm). We used the

equation defined for the dry forest (P , 900) to estimate

tree biomass from data on spiny dry forests in

Madagascar where 524 � P � 554: [AGBi]est ¼
10½�0:535þlog10ðBAiÞ�; where BAi is the basal area of tree i

(BAi ¼ pD2
i /4) and [AGBi]est is the estimated tree

biomass. After log-transforming the variables, we

obtained the following model:

½logðAGBiÞ�est ¼ �0:535 logð10Þ þ logðp=4Þ þ 2 logðDiÞ:
ð8Þ

We used the equation defined for the moist forest (1500

� P � 4000) to estimate tree biomass from data on

moist–wet forests in Madagascar, where 1096 � P �
2013:

FIG. 1. Height–diameter (H, D) relationship in spiny dry
and moist–wet forests. For spiny dry forests, we assumed a
monomolecular model with a maximum height (dashed line)
due to low competition for light and scarce water resources that
limit growth in height in this forest type. For moist–wet forests,
we tested a monomolecular model and polynomial models on
diameter (up to degree 3). For the second forest type, the simple
power model, without asymptote for height, was identified as
the best model. For each forest type, the data set combined
height–diameter data from felled trees from the biomass
protocol (circles) and height–diameter data from independent
inventories in each forest type (crosses). The vertical bar on the
diameter axis indicates the maximum diameter measured in
independent inventories.
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½logðAGBiÞ�est ¼ �2:289þ 2:649 logðDiÞ
� 0:021½logðDiÞ�2: ð9Þ

Second, we used biomass allometric models developed

by Chave et al. (2005) hereafter denoted ‘‘Chave’’

models. Models including only D and q as explicative

variables are denoted Chave.D whereas models includ-

ing H as an additional size covariate are denoted

Chave.H. Chave et al. (2005) suggest one equation per

model and forest type. The forest type definition was

based on annual precipitation and seasonality. We used

the two equations defined for the dry forest (P , 1500

and more than five months of dry season) to estimate

tree biomass from data on spiny dry forests in

Madagascar (Eq. 10). In Chave.D models, the authors

assume a cubic polynomial relationship between tree

height and tree diameter:

½logðAGBiÞ�est ¼ �0:667þ 1:784 logðDiÞ
þ 0:207½logðDiÞ�2 � 0:0281½logðDiÞ�3

þ logðqiÞ

½logðAGBiÞ�est ¼ �2:187þ 0:916 logðqiD
2
i HiÞ: ð10Þ

We used the two equations defined for the moist forest

(1500 � P � 3500 and a one-to-five-month dry season)

to estimate tree biomass from the data on moist–wet

forests in Madagascar:

½logðAGBiÞ�est ¼ �1:499þ 2:148 logðDiÞ
þ 0:207½logðDiÞ�2 � 0:0281½logðDiÞ�3

þ logðqiÞ

½logðAGBiÞ�est ¼ �2:977þ logðqiD
2
i HiÞ: ð11Þ

Different indices were used to compare the eight models

for each forest type. First, we computed the residual

standard error RSE, which was defined as the standard

deviation of the residual errors ei (with ei¼ log(AGBi )�
[log(AGBi )]est). The smaller the RSE, the smaller the

unexplained part of the observed biomass. Second, we

computed the coefficient of determination of the model

R2 ¼ 1�
X

i

e2
i

,X

i

�
logðAGBiÞ � ½logðAGBÞ�mean

�
2

4

3

5

with [log(AGB)]mean being the mean of the observed log-

transformed biomass. The coefficient of determination is

an indication of the goodness of fit of the model. R2

should be interpreted considering the degrees of freedom

of the model df ¼ nobs � npar, with nobs the number of

observations and npar the number of parameters, as a

model with a higher number of parameters should fit the

data better and should have a higher R2. Third, we

computed the Akaike information criterion for each

model, AIC ¼ �2 log(L) þ 2npar, L being the model

likelihood. The AIC is a penalized estimation of the

goodness of fit of the model given the number of

parameters. As the fourth and last index, we computed

the model bias for each tree i, biasi¼ 100(1/exp(ei )� 1),

as a percentage of the tree biomass. The bias can be

positive or negative, indicating over- or underestimation

of tree biomass. We plotted the bias as a function of the

tree diameter and computed the mean bias of the model

for each forest type:

Bias ¼
X

i

biasi

 !�
nobs:

For each regional empirical model, the estimated value

of the intercept b0 (Table 2) included the correction

factor CF ¼ r2/2 imposed by the inverse log-transfor-

mation of the response variable (Chave et al. 2005).

RESULTS

Performance of generic and theoretical biomass

allometric models

The Brown models not including WSG as an

explicative variable explained 33% and 88% of the

biomass variability of the spiny dry and the moist–wet

forest, respectively. These were the lowest values of the

coefficient of determination of all the models tested in

this study (see R2 in Table 2). In the spiny dry forest of

Madagascar, species have highly variable WSG and

frequently low WSG (Fig. 3). For this forest type, the

Brown model was the most biased and significantly

overestimated tree biomass (mean bias equal to 91.1%;

Table 2, Figs. 2 and 4).

Chave.D models not including tree height as an

explicative variable also yielded relatively poor results.

They explained only 70% and 88% of biomass variability

in the spiny dry and the moist–wet forest, respectively

(Table 2). The cubic polynomial relationship between

tree height and diameter was not adapted to Madagas-

car forests and led to significant overestimation of tree

biomass with a mean bias of 63.3% in the spiny dry

forest and of 36.9% in the moist–wet forest (Table 2,

Fig. 2). One reason for this poor predictive ability is

almost certainly the fact that the shape of the Chave.D

models does not assume an asymptotic tree height–

diameter relationship, which we found to apply to trees

in Madagascar spiny-dry forests (Fig. 1). In addition,

the models included a significant positive effect of the

(log(D))2 covariate (b2 ¼ 0.207 for Chave.D models,

Table 2), which we found to be nonsignificant in

Madagascar moist–wet forests (Fig. 1).

The Mada.II.2-WEB model, which assumes a power-

law relationship between tree biomass and diameter with

a fixed scaling exponent of 8/3, performed better than

the two previous models in both forest types (R2 equal

to 70% and 91% in spiny dry and moist–wet forests,

respectively; Table 2). Nevertheless, the model signifi-

cantly overestimated tree biomass in the spiny dry forest

(mean bias of 22.4%; Table 2, Fig. 2) mainly because it
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did not assume an asymptotic height–diameter relation-

ship. However, for the moist–wet forests, the model
fitted the data much better and was much less biased

than the Brown and Chave.D models (bias , 10%) on
the diameter range of our data set. However, due to the

high value of the scale parameter for the Mada.II.2-
WEB model (b1 ¼ 8/3 ’ 2.667), which was higher than
the estimated scale in model Mada.II.1 b1 ¼ 2.297), the

Mada.II.2-WEB model predicted unrealistically high
biomass values for trees with D � 40 cm (Fig. 4).

The Chave.H model was thus the best model of all the
generic and theoretical models for the two types of forest

considered in this study (R2 equal to 83% in the spiny
dry forests and 93% in the moist–wet forests). Chave.H

models had a low mean bias (�2.7% and �4.2% in the
spiny dry and moist–wet forests respectively, Table 2)

and performed as well as empirical regional models
when considering bias as a function of tree diameter
(Fig. 2).

Performance of regional empirical models

The regional empirical models fitted the data better
than the theoretical or generic models for both forest

types (R2 � 86% and R2 � 94% in spiny dry and moist–

wet forests, respectively, Table 2). With the exception of

the Chave.H model, regional empirical models were
much less biased than the theoretical and generic models

(bias � 7.9% and bias � 5.8% in spiny dry and moist–
wet forests respectively, Table 2). For both forest types,

the first parameterization for model Mada.I, with a
linear additive combination of the three explicative
variables (D, H, and q) fitted the data better (see R2 and

AIC values in Table 2) than the second parameteriza-
tion, which included a compound variable (qD2H ).

For spiny dry forests, models Mada.I.1, Mada.I.1-
wHD and Mada.II.1 were equivalent both in terms of

goodness of fit (89% � R2 � 90% and 90 � AIC � 99
Table 2) and in terms of bias (3.9% � bias � 5.6%,

Table 2) for the diameter range of our data set (D � 32
cm). However, field observations and ecological consid-

erations regarding the availability of light and water
resources in the spiny dry forest suggest an asymptotic
relationship between tree height and diameter (Fig. 1).

Therefore, model Mada.I.1 appears to be the best model
for spiny dry forests when tree height is known from

field inventories whereas model Mada.I.1-wHD is best
when tree height is not known, to avoid overestimating

biomass for trees with a large diameter (D . 32 cm).

TABLE 2. We compared regional allometric models (Mada.I.1, Mada.I.1-wHD, Mada.I.2, and Mada.II.1) with generic allometric
models (Brown, Chave.H, and Chave.D; see Brown 1997, Chave et al. 2005) and with the WEB theoretical model (Mada.II.2-
WEB; see West et al. 1997).

Model b0 b1 b2 b3 df RSE R2 AIC Bias Eq.

Madagascar spiny dry forests

Brown �1.473 2 130 0.84 0.33 335 91.1 A
Chave.H �2.187 0.916 130 0.42 0.83 156 �2.7 B
Chave.D �0.667 1.784 0.207 �0.028 128 0.43 0.70 262 63.3 C
Mada.I.1 �1.103 1.994 0.317 1.303 128 0.33 0.90 90 5.3 D
Mada.I.1-wHD 12.120 1.300 0.052 128 0.34 0.89 99 3.9 E
Mada.I.2 �1.778 0.870 130 0.39 0.86 128 7.9 B
Mada.II.1 �0.791 2.118 1.372 129 0.34 0.90 92 5.6 F
Mada.II.2-WEB �1.999 8/3 131 0.57 0.70 226 22.4 G

Madagascar moist–wet forests

Brown �2.289 2.649 �0.021 333 0.39 0.88 438 35.5 H
Chave.H �2.977 335 0.33 0.93 234 �4.2 I
Chave.D �1.499 2.148 0.207 �0.028 332 0.38 0.88 444 36.9 C
Mada.I.1 �1.948 1.969 0.660 0.828 332 0.29 0.95 122 4.3 D
Mada.I.1-wHD 1.010 0.547 0.071 332 0.33 0.94 218 4.7 J
Mada.I.2 �2.108 0.908 334 0.29 0.95 135 4.5 B
Mada.II.1 �1.159 2.297 0.830 333 0.33 0.94 215 5.8 G
Mada.II.2-WEB �2.122 8/3 335 0.39 0.91 320 8.0 H

Notes: RSE is the residual standard error, R2 is the coefficient of determination, and AIC is the Akaike information criterion.
Bias (in %) is the model relative error (see Material and methods for details on the index computation). Models selected for each
forest type are in boldface type.

Equations (Eq.) are:

A) [AGB]est¼ exp[b0 þ b1 log(D)]
B) [AGB]est ¼ exp[b0þ b1 log(qD

2H )]
C) [AGB]est ¼ expfb0þ b1 log(D) þ b2[log(D)]2 þ b3[log(D)]3þ log(q)g
D) [AGB]est ¼ exp[b0þ b1 log(D)þ b2 log(H )þ b3 log(q)]
E) [H]est¼ b0 – (b0 – b1)exp(�b2D)
F) [AGB]est ¼ exp[b0þ b1 log(D) þ b2 log(q)]
G) [AGB]est¼ exp[b0 þ b1 log(D) þ log(q)]
H) [AGB]est¼ expfb0 þ b1 log(D)þ b2[log(D)]2g
I) [AGB]est ¼ exp[b0þ log(qD2H )]
J) log(H ) ¼ b0 þ b1 log(D) þ e, e ; N (0, var¼ b2)

where [AGB]est is estimated aboveground biovolume; b0, b1, b2, and b3 are linear model parameters; D is tree diameter; H is tree
height; q is tree-wood specific gravity; e is the residual error term; and N refers to the normal distribution.
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For moist–wet forests, the Mada.I.1 model, which

included tree height as an explicative variable, was the

best model for any of the statistical criteria examined

(see RSE, R2, AIC, or bias in Table 2). Models

Mada.I.1-wHD and Mada.II.1 were largely equivalent

both in terms of goodness of fit (94% � R2 � 95% and

215 � AIC � 218; Table 2) and in terms of bias 4.7% �
bias � 5.8%, Table 2) with model Mada.II.1 performing

FIG. 2. Model bias as a function of tree diameter. For the
theoretical model (Mada.II.2-WBE), the generic models
(Brown, Chave.H, and Chave.D) and the best empirical
regional models (Mada.I.1 and Mada.I.1-wHD for spiny dry
forests, Mada.I.1 and Mada.II.1 for moist–wet forests), we
computed the bias (as a percentage of aboveground biomass
[AGB]) associated with the prediction for each tree i (biasi ¼
100[1/exp(ei ) � 1] with ei ¼ log(AGBi ) � [log(AGBi )]est; see
Material and methods: Comparison of regional allometric models
with generic models for more details on the notation). Models
may underestimate tree biomass (model curve under the thin
gray zero bias line) or overestimate tree biomass (model curve
above the zero bias line). The empirical regional models (black
lines) were much less biased than the theoretical model and the
generic models (gray lines).

FIG. 3. Biomass prediction as a function of tree diameter
and wood specific gravity. To predict biomass, we used the best
regional empirical models that included tree diameter and wood
specific gravity (WSG) as covariates (Model.I.1-wHD for the
spiny dry forests and Model.II.1 for the moist–wet forests).
Each gray dot corresponds to an individually weighed tree. We
plotted the biomass–diameter predicted relationship for three
levels of wood specific gravity: the mean of the WSG for the
forest type (q2¼mean), the 0.025 quantile (q1¼Q0.025), and the
0.975 quantile (q3¼Q0.975). For the spiny dry forests, WSG was
highly variable (in comparison with the moist–wet forests), and
WSG explained a high percentage of the variability of tree
biomass.
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slightly better. This can be explained by the fact that the

Mada.I.1-wHD model uses a power-law relationship

between tree height and diameter (Fig. 1) to estimate

tree height in the first step and tree biomass in the

second step compared to model Mada.I.1, which already

includes height and diameter. This approach increases

the regression error in the estimation of biomass
compared to direct estimation of biomass from a unique

power-law relationship based on diameter, which is the
case in the Mada.II.1 model. Therefore, the Mada.II.1

model appears to be the best approach for estimating
biomass in moist–wet forests when tree height is not
available in forest inventories.

DISCUSSION

Using regional biomass allometric models for conservation
purposes in Madagascar

High-resolution methods and biomass allometric

equations are needed to achieve Tier III level of
accuracy for the application of REDD (Aalde et al.

2003, IPCC 2006). Here, we demonstrate that regional
allometric models performed better than generic or

theoretical models in Madagascar forests, with the best
regional models explaining 89% and 94% of the
variation in tree AGB for spiny dry and moist–wet

forests, respectively. Chave et al. (2004) recommend
pan-tropical models rather than local allometric models

that may be based on less than 100 destructively sampled
trees to estimate forest biomass. In Madagascar, we

sampled 135 trees in the spiny dry forest and 346 trees in
the moist–wet forest. As an indication of sampling

intensity and representativeness, we sampled 3.75 trees/
km2 of tropical forest in Madagascar. In contrast,

allometries in Chave et al. (2005) are based on 0.23 trees/
km2 of forest in other countries (Appendix C).

Aalde et al. (2003) underlined that allometric models
should not be used out of their domain of validity. In

our case, the maximum tree diameter in the samples used
to estimate biomass allometric models was relatively low

(32 cm in the spiny dry forests and 54 cm in the moist–
wet forests) compared to the maximum diameter of the

randomly sampled trees we used to estimate height–
diameter allometric models (48 cm and 128 cm,

respectively). However, the main pitfall of biomass
allometric models of type II (that do not use tree height
as an explicative variable), when they are extrapolated

beyond the maximum tree diameter, is that the limited
increase in tree height at large diameters due to

mechanical or physiological constraints (Niklas 1995,
Midgley 2003, Vieilledent et al. 2010) is not included in

the model. This leads to considerable overestimation of
the tree biomass at large diameters (Zianis and

Mencuccini 2004, Chave et al. 2005). In our study, we
measured and modeled the change in the height–

diameter relationship up to tree diameters of 48 cm
and 128 cm for spiny dry and moist–wet forests,

respectively, and we used the results to choose between
model Mada.I.1-wHD and Mada.II.1 for tree biomass

estimation in cases when height is not available in forest
inventories. Therefore, we can confidently state that the
domain of validity of our models is D 2 [5, 48 cm] in the

spiny dry forest and D 2 [5, 128 cm] in the moist–wet
forest of Madagascar.

FIG. 4. Comparing model biomass predictions for large
diameter trees. From the diameter and wood specific gravity, we
compared the biomass predictions of the best regional empirical
models (Mada.I.1-wHD for spiny dry forests and Mada.II.1 for
moist–wet forests) with the predictions of the theoretical and
generics models. The diameter values used for predictions were
limited to the validity domain of each model, which depended
on the maximum diameter of the data used to estimate the
parameters of each model. The wood specific gravity (q) was set
at the mean for each forest type. For large trees (D � 20 cm for
spiny dry forests and D � 40 cm for moist–wet forests), the
theoretical and generic models (gray lines) considerably
overestimated biomass compared to the best models we
identified (black lines).
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Our results show that generic biomass allometric

models that include WSG as an explicative variable are

preferable to models that do not, especially in dry forest

ecosystems where species mean wood specific gravity is

highly variable and can be very low (as low as 0.10 for

Pachypodium lamerei Drake in the Madagascar spiny

dry forest; Appendix B). In the present study, we

provided WSG estimations for the most abundant

species and genera in the spiny dry forest (21 identified

species and 40 genera) and in the moist–wet forest (31

identified species and 15 genera) of Madagascar

(Appendix B). The mean WSG by taxonomic level took

into account intra-individual, inter-individual and, in

the case of the WSG at the genus level, interspecific

WSG variability. We supplemented these data with

WSG for commercial species and genera from the work

of Rakotovao et al. (2011) and built a large WSG data

base containing 265 species and genera (Appendix B)

that can be used to estimate biomass and carbon stock in

the tropical forests of Madagascar.

As part of the REDDþ pilot project called ‘‘Holistic

Conservation Programme for Forests’’ (PHCF) in

Madagascar (for more details see the Acknowledge-

ments), the specific biomass allometric models and the

large WSG data base we obtained for Madagascar were

used to compute the aboveground carbon density

(ACD, in Mg C=ha) at 83 sites in the spiny dry and

moist–wet forests (G. P. Asner et al., unpublished

manuscript; Asner et al., in press). Field plot carbon

measurements were used to calibrate the airborne light

detection and ranging (lidar) data used to derive carbon

maps of a 3 670 081-ha region covering both spiny dry

and moist–wet forests in Madagascar (G. P. Asner et al.,

unpublished manuscript; Asner et al., in press).

Identifying a universal biomass allometric model

Although several authors found WSG to be a key

explicative variable for estimating tree biomass (Baker et

al. 2004, Chave et al. 2005, 2009), Brown et al.’s models

which do not include WSG are those suggested by the

IPCC (Aalde et al. 2003) and by Pearson et al. (2005).

This represents a significant caveat to developing sound

carbon estimates for REDD. Brown et al.’s models were

published in 1989 and 1997 and aimed at providing

generic allometric models at a time when information on

wood density was scarce. Today, reliable world data sets

on wood densities exist (Reyes et al. 1992, IPCC 2006,

Chave et al. 2009, WAC 2010) and methods have been

proposed to estimate species wood density from

phylogeny for use when information is not available at

the species level (Baker et al. 2004, Slik 2006).

Our results show that the use of the power-law

relationship between biomass and diameter, advocated

by the WBE allometric scaling theory, does not always

lead to accurate biomass estimates (R2 equal to 70% and

bias of 22.4% for the spiny dry forest of Madagascar).

Although the first aim of the WBE theoretical model

was not to accurately estimate tree biomass but rather to

demonstrate that ‘‘size affects rates of all biological

structures and processes from cellular metabolism to

population dynamics’’ (West et al. 1997), several

authors whose aim was to develop biomass allometric

model referred to the work of West et al. (1997) to

explain the choice of the power-law relationship

(Ketterings et al. 2001, Chojnacky 2002, Zianis and

Mencuccini 2004). Through our study, we show that the

power-law is only adapted to forests where tree height–

diameter allometry can also be modeled with a power-

law relationship (such as in the moist–wet forest of

Madagascar).

Among Chave’s models, the Chave.H model was the

only one to be particularly robust. The model satisfac-

torily fitted the data for both spiny dry and moist–wet

forests (R2 of 83% and 93%, respectively) with a very

low bias (�2.7% and �4.2%, respectively). Although

Chave et al. (2005) demonstrated that this model

produces a very high coefficient of determination (R2

� 99%) for many different forest types across various

tropical countries, its robustness for forests in Mada-

gascar was not a priori obvious because no African data

were used to estimate the Chave.H model parameters

and because Madagascar has a very high rate of

endemism, close to 96% for tree species (Goodman

and Benstead 2005). In the evergreen forests of Ghana,

Henry et al. (2010) also found that the Chave.H model

provided accurate estimates of tree biomass (R2 ¼ 97%
and mean bias ¼ 3.74%). Considering that constructing

allometric models specific to each country is destructive,

time-consuming, and expensive, we suggest using the

Chave.H model as a first approximation to estimate tree

biomass when country-specific allometric models are not

available. The Chave.H model should be especially

valuable in Africa, considering that the continent’s

tropical forests represent 30% of the global total (FAO

2005) and that almost no allometric models are available

for Africa (but see Henry et al. 2010 and Kaonga and

Bayliss-Smith 2010).

Utility of developing tree height–diameter allometry

to estimate forest biomass

Because height is often not measured in forest

inventories, tree diameter is usually the only size

covariate available to estimate tree biomass and

consequently, the Chave.H model cannot be used

directly. Thus, when regional biomass allometric models

are not available, the results of our study suggest that

regional height–diameter allometries in conjunction with

Chave.H biomass allometric models should be used to

obtain accurate estimates of tropical forest biomass and

carbon stock. When the height–diameter relationship is

asymptotic, as is the case in the spiny dry forest of

Madagascar, tree height can be modeled as a function of

diameter using an asymptotic nonlinear model such as

the monomolecular model used in this study. The

estimated height can then be used as an input variable

for the Chave.H biomass allometric model that includes
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height as a covariate. This approach was used in the

PHCF REDDþ pilot-project to estimate ACD at cloud

forest sites in the mountainous Tsaratanana region

(northern Madagascar). These sites were characterized

by higher altitude (. 2000 m), higher precipitation (.

3000 mm/yr), and smaller trees compared to the sample

sites used in the present study. For these cloud forest

sites, a local height–diameter relationship was estimated

based on a sample of trees and used in conjunction with

the Chave.H wet forest model to estimate ACD (see

Appendix 1 in G. P. Asner et al., unpublished manu-

script). Measuring tree height and diameter in a forest is

not destructive and has become relatively easy and

affordable thanks to new instruments and technologies,

such as the ultrasonic instrument used in this study, even

in closed tropical forest canopies. The height measure-

ment error using such instruments has been estimated to

be close to 10%, which is sufficiently accurate to estimate

reliable height–diameter allometry (Vieilledent et al.

2010). This approach should be advocated by interna-

tional organizations for the application of REDD in

poor countries that cannot afford to develop country-

specific biomass allometric models.
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SUPPLEMENTAL MATERIAL

Appendix A

Location of study sites and forest categories (Ecological Archives A022-035-A1).

Appendix B

Wood characteristics of tree species and genera in the tropical forests of Madagascar (Ecological Archives A022-035-A2).

Appendix C

Number of destructively sampled trees per country used to develop generic biomass allometric models (Ecological Archives
A022-035-A3).
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