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Abstract

Remote sensing observations such as normalized difference vegetation index (NDVI)

trends can provide important insights into past and present land condition. However,

they do not directly provide comprehensive information about our representation of

land degradation and the processes at work. This study aimed to analyze vegetation

productivity underlying factors in order to assess land degradation and to highlight

the impact of definitions on its quantitative assessment, using Mozambique as case-

study. Land productivity change were first analyzed using NDVI time-series

(2000–2016), and a two-step framework was then used to understand the main fac-

tors of these productivity changes. The impact of land degradation's definition was

assessed based on four types of stakeholder, with different priorities in terms of eco-

system services. The results show that 25% of the country display a significant land

productivity decrease, while only 3% display a land productivity increase. A large part

of these land productivity changes (>61% of the decrease, and >98% of the increase)

is directly assigned to human activities, such as native forest growth or tree planta-

tions (for the increase), or forest degradation, deforestation and loss of grassland pro-

ductivity (for the decrease). We showed that the fraction of degraded land varies

according to stakeholders' definitions, ranging from 12% to 20% of the Country,

much less than the 39% estimated by Tier 1 United Nations Convention to Combat

Desertification. This study provides a sound methodological framework for assessing

land degradation status that could help stakeholders to design national and locally

relevant land degradation mitigation policies or programmes.
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1 | INTRODUCTION

Land degradation is a widespread and worldwide phenomenon that

impacts food security, ecosystem services and human well-being. In

the past 5 years, many global and regional initiatives have been

launched to halt land degradation and restore land. In the sustainable

development goals (SDG) adopted by world leaders in 2015, target

15.3 states “...by 2030, combat desertification, restore degraded land
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and soil, including land affected by desertification, drought and floods,

and strive to achieve a land degradation neutral world”. These initia-

tives push countries to set their own targets to reduce poverty,

increase food security and nutrition and reduce land degradation for

the coming decades. This first involves defining what constitutes land

degradation, and then locating and developing a land degradation

baseline at the national level in order to measure the progress made.

However, despite the existence of international guidelines for moni-

toring land degradation (United Nations Convention to Combat

Desertification [UNCCD]—methodology to report SDG indicator

15.3.1), some countries lack up-to-date and reliable estimates of the

status and trend in land degradation. Reasons for this include the fact

that the definition of land degradation may not be consensual, or

because countries currently do not have the capacity to monitor land

degradation (Higginbottom & Symeonakis, 2014).

The difficulty of estimating land degradation is illustrated by the

meta-analysis conducted by Geist and Lambin (2004) who analyzed

more than 130 case-studies about the underlying mechanisms of land

degradation processes. They showed that land degradation is a com-

plex process with various biophysical and socio-economic factors

with no unique analytical framework for addressing land degradation

at a global scale. The differences in definitions, indicators and even

the perception of land degradation explain why estimates of the

extent and severity of global land degradation vary from 15% to more

than 66% (Higginbottom & Symeonakis, 2014; IUCN, 2015; Le

et al., 2016; Van der Esch et al., 2017). For instance, the UNCCD

bases land degradation on “the reduction of biological or economic

productivity” (UNCCD, 2016), while for the Intergovernmental

Science-Policy Platform on Biodiversity and Ecosystem Services

(IPBES, 2018), land degradation is mainly defined as a loss of biodi-

versity. A commonly agreed definition of land degradation could be

the one given by UNEP (2007): “The decline or loss in ecosystem

functions and services of a given territory that cannot fully recover

unaided within decadal time scales”. This raises the issue of dis-

entangling changes over the long term from the impact of short-term

fluctuations driven by seasonal pulse or single events (Cherlet

et al., 2018). However, this definition does not explicitly address the

difficulty in valuing and balancing ecosystem trade-offs. For instance,

the conversion of natural ecosystems into human-oriented produc-

tion ecosystems, such as agriculture, often creates benefits for soci-

ety (food production services) but can simultaneously lead to a loss

of biodiversity and other ecosystem services (Van der Esch

et al., 2017). This example illustrates the subjective nature of any def-

inition of land degradation, which largely explains the difficulty of

estimating it at the global or national scales. Despite these difficulties,

the international scientific community is actively working on

assessing land degradation worldwide and using different approaches

to degradation that can be grouped in three types: (i) expert opinion,

(ii) remote sensing-based assessments and (iii) biophysical models

(Gibbs & Salmon, 2015). Remote sensing has been recognized as a

robust and large-scale monitoring tool for global assessments of land

degradation (Dubovyk, 2017; Higginbottom & Symeonakis, 2014),

through vegetation productivity, and land use/land cover change

analysis. Technical implementation and guidelines for this approach

have been recently published by the UNCCD (2017). As the vegeta-

tion productivity change observed over a long period of time is a

good indicator of the ecosystem's response to natural or human pres-

sures (Wessels et al., 2007; Yengoh et al., 2015), the normalized dif-

ference vegetation index (NDVI) trend, considered a proxy of net

primary production, is one of the main indicators used to assess

changes in vegetation productivity. Despite these commonly agreed

best practices, the link between NDVI trends and land degradation is

still not straightforward (Prince, 2019), particularly since it fails to

characterize the cause of land degradation which can only be

assessed using a dedicated analysis (Dubovyk, 2017).

Despite the abundant literature on vegetation productivity

change analysis, few studies analyze the underlying factors of the

changes observed. These factors can be climatic, anthropogenic or a

combination of both (Evans & Geerken, 2004). To identify factors,

studies use statistical analysis such as correlation analysis, regression

analysis or principal component analysis (de Jong et al., 2013; EL-

Vilaly et al., 2018; Krakauer et al., 2017; Yang et al., 2019) and, more

recently, machine learning algorithms such as 'random forest'

(Gichenje et al., 2019; Leroux et al., 2017). However, these analyses

do not provide spatial and quantitative information on the contribu-

tion of each factor and thereby provide new, consistent insights for

identifying priority areas of intervention for land restoration or con-

servation. At the global scale, Zhu et al. (2016) and Piao et al. (2019)

have proposed a spatial distribution of the relative contribution of

four factors (C02 fertilization, climatic factors, nitrogen deposition

and land cover change) regarding the greening of the Earth and

based on remote sensing observations coupled with an ecosystem

model. Currently, the most widely used wall-to-wall approach to dif-

ferentiate climatic from human-induced vegetation productivity

change is the residual trend analysis proposed by Evans and

Geerken (2004) and known as the RESTREND method (Wessels

et al., 2007). This method consists of removing the effect of climate

variability from the NDVI signal, using a trend analysis of the resid-

uals between the observed NDVI and climatic data (mainly precipita-

tion data). Other approaches to assess the relative role of rainfall

variability or other factors in vegetation productivity change are

based on a classification scheme using the outputs of NDVI trend

analysis, residual trend analysis and correlation analysis with climate-

related data (Leroux et al., 2017; Wang et al., 2017). While these

studies make it possible to locate hot spots of changes in land condi-

tion and to separate the climatic influence of these changes from

other factors (Bai et al., 2008; Le et al., 2016), they do not directly

provide comprehensive information about land degradation. There-

fore, to help decision makers to define targets and interventions to

mitigate land degradation, there is an urgent need for up-to-date

spatial information on land conditions and on the underlying factors

of change at the national scale.

Mozambique is experiencing a rapid depletion of its natural

resources (GoM, 2018). Moreover, the country is committed to
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setting targets to reach land degradation neutrality by 2030. Previous

estimates for degraded areas in Mozambique can be found in the liter-

ature (Bai et al., 2008; Cherlet et al., 2018; Conservation

International, 2018; Paganini et al., 2009). These range from 12%

(Cherlet et al., 2018) to 42% (Paganini et al., 2009) depending on the

study. As for estimates for the global scale as mentioned above, the

large range of land degraded area estimates can be easily explained by

differences in the period of analysis, the methodology, the input

dataset used and the definition of land degradation. In order to pro-

duce a consistent, up-to-date spatial estimation of land degradation in

Mozambique, a quantitative and comprehensive approach to land

degradation is urgently needed.

The objective of this study is to analyze vegetation productivity

underlying factors in order to assess land degradation and to highlight

the impact of definitions on its quantitative assessment, using

Mozambique as case study. Our approach is based on the premise

that only an understanding of the processes underlying land produc-

tivity change can lead to a mapping of land degradation, and that this

mapping is not unique but will depend on the ecosystem service

targeted. To illustrate our point, we have implemented an approach

based on proven NDVI trend analysis methods, which allows for the

mapping of land productivity change factors. Then, for different stake-

holder types, each with different objectives for conserving ecosystem

services, we established rule scenarios that were used to convert the

land productivity change factors map into land degradation estima-

tions. Finally, we compare the results to the 15.3.1 indicator at the

Mozambique scale, calculated according to the UNCCD standard

approach.

2 | MATERIAL AND METHODS

2.1 | Study area: Mozambique

Mozambique is located on the southeast coast of Africa bordered by

the Indian Ocean in the east (Figure 1). The country has an area of

799,380 km2, with mainly lowland regions in the east and a few

mountainous regions in the west of the country, reaching heights of

up to 2,436 m. The climate is tropical to subtropical, with a semiarid

region in the southern provinces and two seasons, a dry cool season

from April to September and a rainy hot season from October to

March. Average annual rainfall ranges from 300 to 1,000 mm in the

southern region and from 1,000 to 2000 mm in the northern region

(Figure 1b). Average annual temperatures range from 20 to 27�C in

the lowlands and 15–25�C at the highest altitudes (GoM, 2002;

Figure 1c). Mozambique's population was estimated at 28 million in

2015, with the northern provinces of Nampula and Zambezia being

the most populous (INE, 2018). The agricultural sector employs more

than 80% of the Mozambican population and accounts for 32% of the

country's GDP (Armand et al., 2019). The Country still has a large pro-

portion of natural forest, mainly Miombo woodland, covering more

than 40% of the Country (GoM, 2018; Figure 1a). Forests play an

important role in the Country's economy, mainly in rural areas, and

represent a source of energy (firewood, charcoal), construction mate-

rial, non-timber forest products and nutrients for small-scale agricul-

ture (Chidumayo & Gumbo, 2010; GoM, 2018). However,

Mozambique's natural resources are rapidly depleting: about

267,000 ha of forests per year were lost between 2003 and 2013,

F IGURE 1 Environment and climate in Mozambique: (a) 2000–2016 land use and land cover change map (Grinand et al., 2018) and province
limits; (b) Annual mean rainfall (mm) over the 2000–2016 period (CHIRPS data; Funk et al., 2015); (c) Annual mean air temperature (�C) over the
2000–2016 period (CRU data) [Colour figure can be viewed at wileyonlinelibrary.com]
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mainly to slash-and-burn agriculture and urban expansion

(GoM, 2018). In addition, some areas are prone to high soil fertility

depletion, which reduces the potential for productive agriculture

(Folmer et al., 1998).

2.2 | Data collection and pre-processing

2.2.1 | MODIS NDVI time-series

The NDVI trends maps were derived from the 16-day MODIS NDVI

products (MOD13Q1 Collection 6) available at a 250 m spatial resolu-

tion (Didan et al., 2015). The MODIS product was selected because it

provides a regular and long-term record of vegetation condition that

can be used to detect change. The MODIS product is considered the

most reliable NDVI record available (Higginbottom & Symeonakis,

2014). MODIS NDVI time-series were downloaded using the NASA's

Application for Extraction and Exploring Analysis Ready Samples

(AppEEARS). The images time-series covers the 2000–2016 period and

the entire Country. The MODIS product is corrected for molecular scat-

tering, ozone absorption and aerosol (Didan et al., 2015). However,

residual noise may persist and disturb the NDVI signal. In order to

reduce this noise, the NDVI time-series was pre-processed using a

Savitzky–Golay filter (polynomial 3 and windows 4) in order to smooth

the data outliers without distorting the signal tendency (Chen et al.,

2004). Then, for each pixel, we calculated the annual cumulated NDVI

(expressed as 'annual NDVI' in this study) by summing the bi-monthly

NDVI values over each climatic year (August n-1 to July n).

2.2.2 | Climate data

In the Miombo ecoregion, vegetation dynamics are controlled mainly

by the rainfall and temperature variability (Campbell, 1996;

Chidumayo, 2005).

We used rainfall estimates derived from satellite imagery as

Mozambique's rain gauge network is sparse with gaps in the temporal

records (Toté et al., 2015). Rainfall data were obtained from the Climate

Hazards Group InfraRed Precipitation with Station data (CHIRPS) rain-

fall estimates (Funk et al., 2015). CHIRPS products were chosen

because they have a high spatial and temporal resolution. Furthermore,

CHIRPS data are considered among the most accurate global gridded

precipitation products (Beck et al., 2017; Burrell et al., 2018). CHIRPS is

a high resolution (0.05�, �5.4 km) monthly precipitation dataset,

starting from 1981 to near-present, which combines satellite imagery

with in situ station data to create gridded rainfall time-series (Funk

et al., 2015). CHIRPS data were downloaded for the 2000–2016 period

using the 'heavyRain' R package (Detsch, 2018) and cumulated over the

climatic year (August n-1 to July n). These data were resampled using

the nearest neighbour resampling method at 250 m to allow for the

comparison with MODIS NDVI data.

Air temperature data were obtained from the Climate Research

Unit Time-Series (CRU TS v.4.03) dataset (Harris et al., 2014), a global

monthly gridded time series dataset that covers the 1901–2018

period at 0.5� resolution (�50 km). CRU data are based on weather

station measurements. The average maximum temperature was calcu-

lated per climatic year (August n-1 to July n) for the 2000–2016

period, and were resampled using the nearest neighbor resampling

method to the MODIS NDVI data spatial resolution of 250 m.

2.2.3 | Land use and land cover data

We used a national land use and land cover change (LULCC) map from

2000 to 2016 produced from a mosaic of cloud-free Landsat images

at 30 m resolution (Grinand et al., 2018). The nomenclature of the

map is composed of six IPCC land cover categories (forest, cropland,

grassland, mangrove, wetland and other land) for 2000 and 2016, and

one land cover change category (three periods of deforestation

between 2000 and 2016). The overall accuracy of the LULCC map is

81%. This LULCC map was resampled to the MODIS NDVI image res-

olution (250 m) using a category majority filter for the six IPCC land

cover categories and by calculating the percentage of deforestation

(2000–2016 period) for the land cover change categories. This choice

makes it possible to keep information on deforestation over small

areas that would be removed with a majority filter and provide

another layer of information.

2.2.4 | Ground observations

Ground observations were collected in order to understand the

underlying factors in land productivity changes. Through interviews

(open-ended questionnaires) and field observations we collected

information on current and past land use and land cover, vegetation

characteristics, natural external pressures (drought, flooding, cyclones

and so forth) and the impact of human activities (e.g., cultivation, graz-

ing, fire and logging). A total of 330 ground observations were made

in four provinces (Inhambane, Manica, Zambezia and Nampula) in April

and November 2018 (dry season), in areas characterized by different

changes in land productivity. The observations were complemented

by visual interpretation of very high resolution satellite images avail-

able on Google Earth.

2.3 | Data analysis

Data analysis was conducted in three steps (Figure 2).

2.3.1 | Land productivity change analysis

NDVI trend analysis

Land productivity changes were analyzed using a statistical trend anal-

ysis applied to each pixel of the 16-year annual MODIS NDVI time

series. The statistical trend analysis is based on an ordinary-least
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square (OLS) regression. OLS quantified NDVI value changes (depen-

dent variable) against time (independent variable). A positive slope

coefficient indicates a productivity increase and a negative slope coef-

ficient indicates a productivity decrease. The significance of the slope

coefficient was determined using the P-value, at a 95% confidence

level (P-value < .05). Each pixel was then classified in three NDVI

trend types: significant increase or decrease in productivity and non-

significant changes.

NDVI-climate data correlation

We calculated the Bravais–Pearson correlation coefficient between

annual cumulated NDVI value and annual cumulated rainfall value and

annual average maximum temperature value over the 2000–2016

period for each pixel. The correlation was considered statistically

significant at the 95% level (P-value < .05, corresponding to r = 0.50

and r = −0.50). In this study, we only considered positive NDVI-

rainfall and negative NDVI-temperature correlations, because they

represent the most observed correlations in southern Africa according

to Ichii et al. (2002).

NDVI residual trend analysis

We used a residual analysis of the productivity-climate relationship

known as the RESTREND method (Evans & Geerken, 2004; Wessels

et al., 2007) to separate climate and other factors in NDVI changes.

Pixels with no significant NDVI-climate data correlation were

excluded from the RESTREND analysis as suggested by Wessels

et al. (2012). This robust and widely accepted method consists of

(i) calculating an OLS regression between the annual cumulated NDVI

F IGURE 2 Flowchart of the approach used in this study [Colour figure can be viewed at wileyonlinelibrary.com]
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value and the annual cumulated rainfall value or annual average maxi-

mum temperature per pixel and (ii) performing for each pixel a new

OLS regression on the model residuals (the difference between the

observed NDVI value and the predicted NDVI value) with respect to

time. Trends in the residuals were then interpreted as the part of the

vegetation productivity that is not explained by rainfall or tempera-

ture inter-annual variability.

2.3.2 | Land productivity change factor analysis

Climate factor analysis

In this study, we consider that changes in productivity are mainly

related to climate and human factors (which includes all factors

related to land management and their environmental impacts). This

analysis aims to identify the productivity changes induced by rainfall

or temperature trends from those changes induced by human factors.

We followed Leroux et al.'s method (2017) which suggests a classifi-

cation scheme based on the slope of the NDVI trend, the coefficient

of correlation between NDVI and rainfall and NDVI and temperature,

the slope and significance of the NDVI rainfall and NDVI temperature

residuals trends (P-value < .05) (Table 1). As a result, pixels were clas-

sified into three categories (1) NDVI changes through rainfall and/or

temperature change only, (2) NDVI changes through rainfall and/or

temperature change and human factors, (3) NDVI changes through

human factors. The assumption used is, for example, for a positive

NDVI trend, if a positive trend can still be observed after the removal

of the climate effect in the NDVI residual trends, then the change in

land productivity can be explained by more than rainfall and tempera-

ture inter-annual variability alone. For a significant correlation

between NDVI and rainfall and/or temperature, the vegetation pro-

ductivity changes are explained by rainfall and/or temperature and

human factors when the sign of the slope of the NDVI and NDVI

residual trends are the same. On the contrary, vegetation productivity

change can be explained mainly by rainfall and/or temperature when

the sign of the slope of the NDVI and NDVI residual trends are oppo-

site or the trend is not-significant (P-value > .05). If there is no correla-

tion between NDVI and rainfall and NDVI and temperature,

vegetation productivity is driven only by human factors.

Human factor analysis

To produce the final map of land productivity change factors, we fur-

ther analyzed the 'human factors' category produced previously. We

used the LULCC map to identify potential factors of change due to

human activities. We proposed a pixel classification scheme based on

the slope of the NDVI trend and the LULCC categories (Table 2). Each

change factor represents the main potential factor based on ground

observations for productivity changes related to each LULCC

category.

2.3.3 | Land degradation assessment

We tested the impact of stakeholder type perceptions on the assess-

ment of degraded land at the national scale. We defined four types of

stakeholders, based on the prioritization of ecosystem services, with

its own definition: the 'default' UNCCD definition, and three defini-

tions for hypothetical types of stakeholders targeting different eco-

system services and referred hereafter as 'environmentalists', 'farmers'

and 'breeders'. The definitions served to establish four scenarios of

TABLE 1 Classification scheme for the climate factors, based on NDVI and NDVI residual (RESTREND) trends, and on the correlation
coefficients between NDVI and rainfall, and NDVI and air temperature.

NDVI trends
(P-value < .05)

Correlation

coefficient
NDVI-rainfall

Residual

trends rainfall
(P-value < .05)

Correlation

coefficient
NDVI-temperature

Residual trends

temperature
(P-value < .05) Categories of change factors

Decrease (slope < 0) r > 0.50 Slope > 0 or n.sa r > −0.50 Rainfall change

r < 0.50 r < −0.50 Slope > 0 or n.s Temperature change

r > 0.50 Slope > 0 or n.s r < −0.50 Slope > 0 or n.s Rainfall and temperature change

r > 0.50 Slope < 0 r > −0.50 Rainfall change + human factors

r < 0.50 r < −0.50 Slope < 0 Temperature change + human factors

r > 0.50 Slope < 0 r < −0.50 Slope < 0 Rainfall and temp. change + human factors

r < 0.50 r > −0.50 Human factors

Increase (slope > 0) r > 0.50 Slope < 0 or n.s r > −0.50 Rainfall change

r < 0.50 r < −0.50 Slope < 0 or n.s Temperature change

r > 0.50 Slope < 0 or n.s r < −0.50 Slope < 0 or n.s Rainfall and temperature change

r > 0.50 Slope > 0 r > −0.50 Rainfall change + human factors

r < 0.50 r < −0.50 Slope > 0 Temperature change + human factors

r > 0.50 Slope > 0 r < −0.50 Slope > 0 Rainfall and temp. change + human factors

r < 0.50 r > −0.50 Human factors

Abbreviation: NDVI, normalized difference vegetation index.
an.s, non-significant (P-value > .05).
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rules that were used to convert the map of land productivity into four

distinct land degradation estimations (Table 3).

UNCCD defines land degradation as the reduction or loss of the

biological or economic productivity of all land use resulting from

human activities (UNCCD, 2016). In this case, any decrease in land

productivity, except that attributed solely to climate, is considered as

land degradation. The 'environmentalist' definition is similar to the

UNCCD one, except that it includes the climate trend as a cause of

land degradation and leaves out the reduction or loss of cropland pro-

ductivity. In turn, 'farmers' and 'breeders' are only concerned by the

reduction or loss of cropland and grassland productivity, respectively,

resulting from human activities or climatic variabilities and leaves out

the reduction or loss of natural vegetation productivity.

2.4 | Comparison with the 15.3 SDG indicator

In order to place our study in the international context of the SDG,

we compared our results with the indicator 15.3.1 ('Proportion of

land that is degraded over total land area'), calculated according to

the UNCCD recommendations. To do this, we used the Trends.

Earth platform (Conservation International, 2018) developed to sup-

port countries in analyzing data to prepare for their reporting com-

mitments to the UNCCD. We used the Tier1 (global default) data

provided by the platform: MODIS NDVI, CHIRPS rainfall data and

ESA CCI Land cover and Soil Grids (ISRIC), for the 2001–2015

period.

3 | RESULTS

3.1 | Land productivity change

Around 71.5% of the country (55.55 Mha) shows no significant land

productivity change over the period (Figure 3). Some 25.3%

(19.71 Mha) of the total area shows a decrease in land productivity.

By contrast, 3.2% (2.49 Mha) shows an increase in land productivity,

mainly in the Niassa and Cabo Delgado Provinces in the north of the

Country. Except for these two provinces, all provinces are character-

ized by large areas of decreased land productivity (between 56.2%

and 17.2% of the total provincial area) and small areas of increased

land productivity (between 3.1% and 0.9%).

The results of the NDVI-climate data correlation analysis

showed that 19.2% and 15.4% of the country exhibited significant

positive NDVI-rainfall and negative NDVI-temperature relationships,

respectively, during the 2000–2016 period (see Figure 4). Spatial

patterns of NDVI-climate correlation are spatially heterogeneous,

with high values concentrated in the semi-arid region of the south-

ern provinces.

RESTREND analysis applied on pixels marked by significant posi-

tive NDVI-rainfall and negative NDVI-temperature correlations,

resulted in a large majority of 'stable' pixels after climate correction

(78.8% and 85.4% of these processed pixels have no significant

trends; Table 4), indicating that the NDVI trends of these 'correlated'

pixels are largely explained by rainfall and temperature inter-annual

variability. Among the significant residual trends suggesting the influ-

ence of factors other than climate, 3.8% and 2.0% of the total area

have decreasing trends, while 0.3% of the total area has an increasing

trend with rainfall correction and 0.3% has an increasing trend with

temperature correction.

3.2 | Land productivity change factors analysis

We observed that 19.7% of the decreasing trend over the

2000–2016 period can be explained by climate variability alone (rain-

fall or temperature), 61% by human factors alone and 19.4% by cli-

matic variability combined with human factors (Table 5, Figure 5). The

spatial distribution of factors shows that climatic variability is the

dominant factor in NDVI change in the southern provinces (Figure 5).

Forest, cropland and grassland are the main land use categories that

TABLE 2 Classification scheme for human factors, based on NDVI
trends and LULCC categories.

NDVI trends

(P-value <.05) LULCC categories

Categories of change

factors

Decrease

(slope < 0)

Forest 2000 and

Deforestation

>10%

Deforestation

Forest 2000 and

2016

Forest degradation

Cropland 2000 and

2016

Agricultural productivity

decline

Grassland 2000 and

2016

Grassland productivity

decline

Mangrove 2000 and

2016

Mangrove degradation or

deforestation

Urban area 2016 Urban expansion or

densification

Other land use 2016 Others (undifferentiated

multiple factors)

Increase

(slope > 0)

Forest 2016 Native forest growth or

plantations

Cropland 2000 and

2016

Agricultural productivity

increase or fallow

regrowth

Grassland 2000 and

2016

Grassland productivity

increase

Mangrove 2000 and

2016

Mangrove growth

Urban area 2016 Urban greening

Other land use 2016 Others (undifferentiated

multiple factors)

Abbreviations: LULCC, land use and land cover change; NDVI, normalized

difference vegetation index.
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display significant NDVI trends (decreases and increases) between

2000 and 2016 (Table 5, Figures 6 and 7). Forest degradation and

deforestation represent a large proportion of the decreasing trend

(19.3% and 13.2% of the decreasing trend, respectively). The areas

characterized by a decrease potentially due to deforestation are

mainly located in Zambezia Province (Figure 6). The decline in grass-

land and cropland productivity represented 17.7% and 7.9% of the of

the overall decrease trend, respectively.

Regarding positive trends, climate variability alone (rainfall or

temperature) is responsible for 0.2% of the trend over the

2000–2016 period (Table 5, Figure 5), human factors for 98.1% and

climatic variability combined with other factors for 1.7%. We

observed that native forest growth or commercial plantations account

for 51.6% of the total increase trend, mainly in the northern part of

the country (Table 5, Figure 7). A large proportion of grassland experi-

enced an increase in vegetation productivity, accounting for 22.6% of

the total NDVI increase trend. Increased agricultural productivity or

fallow regrowth in cropland represented 17.1% of the total increase

trend.

3.3 | Land degradation assessment

Results show that the estimation of the degraded land area ranges

between 11.9% and 20.3% of the country depending on the stake-

holder type (Figure 8). The fractions of degradation attributed to dif-

ferent factors clearly show the difference in the ecosystem service

prioritized. Indicator 15.3.1. is much higher, with 39% of degraded

land in Mozambique.

4 | DISCUSSION

4.1 | The role of climate and human activities on
land productivity change

In this article, we have implemented an approach based on proven

NDVI trend analysis methods, which allows factors of land productiv-

ity change to be mapped. The calculation of land productivity trends

is based on a trajectory indicator of the NDVI annual mean which has

proved, using local expertise, to be the best approach to reflect land

changes when compared with more sophisticated ones (Teich

et al., 2019). Compared with the UNCCD approach, we used linear

regressions and calculated the annual mean over the climatic year

(August n-1 to July n) rather than the civil year as recommended by

Montfort et al. (2019). Although linear regression is widely used for

NDVI trend analysis, sometimes it cannot comply with the OLS statis-

tical assumptions (de Beurs & Henebry, 2005) and can be a limitation

of this study. However, some authors have shown that linear regres-

sion can be consistent with the OLS hypotheses in some cases and

results with linear and non-parametric such as Mann–Kendall trends

tests are very similar (Jamali et al., 2014; Wessels et al., 2012). Fur-

thermore, the use of the non-parametric method does not generally

outperform the parametric method for identifying trends (Jamali

et al., 2012). Concerning the factor analysis, based on in situ observa-

tions and scientific literature, two categories of factors were studied:

climate (rainfall and air temperature) and human factors (land manage-

ment) (Boisvenue & Running, 2006; Zhu et al., 2016).

Our results show that a large proportion of land in Mozambique

is characterized by no significant trend in land productivity (72%),

TABLE 3 Four land degradation scenarios based on the list of land processes expected to produce degraded land (ticked column), according
to stakeholder type definitions.

UNCCD Environmentalist Farmer Breeder

Climate change + others (decrease trends) ✓ ✓ ✓ ✓

Climate change (decrease trends) ✓ ✓ ✓

Native forest growth or plantation

Agricultural productivity increase

Fallow regrowth

Grassland productivity increase (herbaceous species)

Grassland productivity increase (woody species) ✓

Mangrove productivity increase or regrowth

Urban greening

Deforestation ✓ ✓

Forest degradation ✓ ✓

Agricultural productivity decline ✓ ✓

Grassland productivity decline ✓ ✓

Mangrove degradation or deforestation ✓ ✓

Urban expansion or densification ✓ ✓ ✓ ✓

Others (decrease trends) ✓

Abbreviation: UNCCD, United Nations Convention to Combat Desertification.
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while the rest of the territory is mainly dominated by a decrease

(25%), alongside an increase (3%) in land productivity. The decreasing

proportion is of the same order of magnitude as the 28% reported by

Bai et al. (2008) for Mozambique in the 1981–2003 period. We also

showed that a large majority of the land productivity decrease (61%)

was due to only human factors that 19.7% involved only climatic vari-

ables, and 19.4% was explained by both climate and human factors.

The correlations between annual climate variables (rainfall and air

temperature) and the mean annual NDVI calculated over the climatic

year indicate that for at least 15% of the Country, the land productiv-

ity dynamic is dependent on the climate trend. It is interesting to note

that the inclusion of the air temperature variable in the climatic driver

analysis increases the share of trends in land productivity explained

by climatic factors (around 9% of the decrease in land productivity is

explained by temperature alone), as shown by Burrell et al. (2019).

This is particularly true in the southern provinces of Mozambique,

such as the semiarid Inhambane province, characterized by a large

decrease in land productivity. The role of temperature in land produc-

tivity trends over recent years is globally explained by the average air

temperature increase of 0.6�C observed between 1960 and 2006

(Winthrop et al., 2018). Similar studies carried out in the Sahel region

(Dardel et al., 2014; Fensholt et al., 2012; Herrmann et al., 2005;

Hickler et al., 2005), where rainfall is the main limiting factor for vege-

tation growth, reached the same conclusion on the impact of climate

on land productivity trends.

Despite the important role of climate in land productivity

changes, human activities remain the dominant factor in land produc-

tivity change in Mozambique, explaining at least 61% of the decrease

observed at the national scale. This result is consistent with recent

studies that showed the prominent role of human land-use manage-

ment in global vegetation change (Chen et al., 2019; Song

et al., 2018). The main human activities reducing land productivity

were forest degradation and deforestation. Illegal and legal logging,

firewood and charcoal production and fires were reported to be the

most important causes of forest degradation (GoM, 2018; Sitoe

et al., 2012). Controlled and uncontrolled fires are widespread in

Mozambique (Sitoe et al., 2012) and are reported to impact 30 million

hectares of forest and other land (38%) each year (Hoffmann

F IGURE 3 Annual land
productivity trend without
climate correction maps of
Mozambique calculated for the
2000–2016 period [Colour figure
can be viewed at
wileyonlinelibrary.com]
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et al., 2009). Locally, Miombo aboveground woody biomass is nega-

tively affected by frequent and high intensity fires (Ribeiro

et al., 2008; Ryan & Williams, 2011; Saito et al., 2014). Regarding the

second factors concerning forest areas, this is in line with the recently

published Forest Reference Emission Level (GoM, 2018) that reported

a high rate of deforestation of 267,000 ha per year during the

2003–2013 period. Shifting cultivation was reported to be the major

cause of deforestation in Mozambique. The Zambezia and Nampula

provinces are particularly characterized by decreasing trends due to

deforestation, forest degradation and fires. These provinces have the

Country's highest rural population density and had the country's

highest deforestation rates between 2003 and 2013 (GoM, 2018).

Furthermore, the Zambezia and Nampula Provinces also have

extended cropland (mostly small-scale farms), but a large part of this

cropland is characterized by reduced productivity. We interpreted this

decline in terms of potential soil erosion and soil fertility depletion

due to agricultural practices (Folmer et al., 1998). This can greatly

affect agricultural productivity and, consequently, the national econ-

omy and food security. This factor could guide the choice of areas for

priority interventions for the restoration or management of land

resources.

Finally, the increase in land productivity (3% of Mozambique's ter-

ritory) is almost entirely driven by human factors (>98%). It was

observed in native forest (51.6%), grassland (22.6%) and cropland

F IGURE 4 NDVI-rainfall and NDVI-temperature relationship during the 2000–2016 period (Bravais–Pearson coefficient, statistically
significant at the 95% level or r = 0.50 or r = −0.50) [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 4 Distribution of land
productivity trends after climate
correction (Rainfall data: CHIRPS;
Temperature data: CRU) in Mozambique,
calculated for the 2000–2016 period.

Residual trends

Rainfall Temperature

Area (ha) % total area Area (ha) % total area

Decrease (P < .05) 2,971,992 3.8 1,551,248 2.0

Increase (P < .05) 198,737 0.3 207,929 0.3

Not significant 11,778,078 15.1 10,265,643 13.1

Total 14,948,807 19.2 12,024,820 15.4
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(17.1%) and can be attributed to land management changes. Locally,

Niassa and Cabo Delgado Provinces displayed an increase that can be

explained by forest regeneration or plantation, and grassland manage-

ment or bush encroachment (Brandt et al., 2017; O'Connor

et al., 2014; Stevens et al., 2016). Indeed, these two provinces have

the largest conservations areas in Mozambique and are characterized

by low human population densities. This situation, together with

favorable climatic conditions, could explain the increase in land

productivity.

As highlighted previously, to extend the factor analysis, more gro-

und surveys would help grasp more subtle or local factors (Brandt

et al., 2015; Leroux et al., 2017; Mbow et al., 2015). Then, the use of

statistical or regression methods would make it possible to add these

variables (distance to river, fire occurrence, topography, etc.)—

including socio-economic ones (population density, distance to mar-

ket, cattle density, etc.)—in land productivity trend models and then to

produce a quantitative analysis of the factors (Leroux et al., 2017).

Another improvement could be the dissociation between herbaceous

and woody vegetation changes in order to provide additional informa-

tion on productivity change factors (Brandt et al., 2016). Recently,

approaches based on passive microwave vegetation optical depth

(Tian et al., 2016), or long-term and short-term sensitivity changes

between satellite vegetation indices and rainfall data (Kaptué

et al., 2015) have been suggested to assess woody or herbaceous

changes.

4.2 | From land productivity change to land
degradation: A question of perception

In this study, we showed that understanding the processes underlying

land productivity change is a necessary step prior to mapping land

degradation, and that this map is not unique but depends on the eco-

system service being targeted. Indeed, this study adds to the large

body of literature on land degradation by highlighting the impact of

the perception of land degradation on its assessment. Previous studies

(Hobbs, 2016; IUCN, 2015; Van der Esch et al., 2017) mentioned that

estimations of land degradation vary greatly due to the divergence in

definition and perception, but in this article we were able to illustrate

and quantify these divergences by simulating four stakeholder types.

TABLE 5 Distribution of main factors of land productivity change in Mozambique, calculated for the 2000–2016 period.

NDVI trends Categories of climate and human change factors Hectares % increase or decrease

Decrease (P < .05) Climate Rainfall change 1,655,803 8.4 19.7

Temperature change 1,714,529 8.7

Rainfall and temperature change 518,659 2.6

Climate + human Rainfall change + human factors 1,527,625 7.8 19.4

Temperature change + human factors 917,456 4.7

Rainfall and temp. change + human factors 1,350,427 6.9

Human Forest degradation 3,806,104 19.3 61.0

Grassland productivity decline 3,490,382 17.7

Deforestation 2,601,731 13.2

Agricultural productivity decline 1,555,429 7.9

Mangrove degradation or deforestation 44,259 0.2

Urban expansion or densification 13,879 0.1

Others (undifferentiated multiple factors) 511,499 2.6

Increase (P < .05) Climate Rainfall change 5,353 0.2 0.2

Temperature change 634 0.03

Rainfall and temperature change 0 0

Climate + human Rainfall change + human factors 35,353 1.4 1.7

Temperature change + human factors 7,780 0.3

Rainfall and temp. change + human factors 227 0.01

Human Native forest growth or plantation 1,283,180 51.6 98.1

Grassland productivity increase 563,010 22.6

Agriculture productivity increase or fallow regrowth 394,324 17.1

Mangrove productivity increase or regrowth 35,094 1.4

Urban greening 1,408 0.1

Others (undifferentiated multiple factors) 164,644 5.3
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F IGURE 5 Spatial distribution of the climate factors of the NDVI trends (Rainfall and temperature change are regrouped for clarity) [Colour
figure can be viewed at wileyonlinelibrary.com]

F IGURE 6 Spatial distribution of the main factors of land productivity decreases [Colour figure can be viewed at wileyonlinelibrary.com]
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These four theoretical groups had their own targeted ecosystem ser-

vices that were converted into indicators of change (biodiversity

loss, reduced human and animal food production), durability of the

change (temporary or permanent; Prince, 2019), and integration or

non-integration of climate trends. These indicators were used to

build four scenarios of land processes that, combined with the land

productivity factors map, produced four different degraded land

maps. Based on the scenarios, the proportion of degraded land var-

ies between 11.9% (farmers) and 20.3% (UNCCD stakeholders) of

the national territory, which is much smaller than the value of the

indicator 15.3.1. (39%) computed with Trends Earth using Tier 1 data

over Mozambique.

F IGURE 7 Spatial distribution of the main factors of land productivity increases [Colour figure can be viewed at wileyonlinelibrary.com]

F IGURE 8 Distribution of the fraction of degraded land in Mozambique as a function of the main factors, and for each stakeholder type and
proportion of degraded land (2001–2015) calculated using the UNCCD default method (SDG 15.3.1 indicator) [Colour figure can be viewed at
wileyonlinelibrary.com]
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The difference between UNCCD stakeholder estimations of

degraded land (20.3%) and indicator 15.3.1. (39%) can be explained by

the difference in the LULC datasets that were used (Tier 1 vs. Tier 2)

and by the NDVI period of integration (climate vs. civil year). As previ-

ously stated by different studies (Burrell et al., 2018; Montfort

et al., 2019), the results are highly dependent on the choice of input

data, namely, the LULC, climatic and NDVI datasets.

Considering the four stakeholder types, the differences in the

assessment of the proportion of land which is degraded comes from

the different weights of the human factors in land productivity

changes. Indeed, climate (and climate plus human) has the same

weight for all scenarios, counting for around 10% of degraded land for

the whole Mozambique territory, while human factors depend on land

management or absence of management. For example, an increase in

the productivity of grassland cover can come from intensified range-

land management, or from bush encroachment. Bush encroachment is

the most probable explanation in Mozambique, where pasture man-

agement is low (Marblé, 2012) and is therefore a sign of land degrada-

tion for breeders, while it can be interpreted as land restoration for

other stakeholders due to increasing aboveground carbon stocks

(Ayalew & Mulualem, 2018). Similarly, increasing land productivity

due to commercial plantations can be seen as a benefit in terms of the

land's economic productivity, but also as a loss of biodiversity if plan-

tations replace natural ecosystems (Bremer & Farley, 2010; process of

deforestation, for example). On the other hand, a decrease in cropland

productivity will be a sign of land degradation for farmers, but not for

the other stakeholders as long as it does not affect biodiversity. These

examples illustrate the ambiguity and limits of UNCCD and IPBES def-

initions that do not consider the trade-off among various ecosystem

services for land degradation assessment as highlighted by Van der

Esch et al. (2017). Our results support the conclusions of previous

studies on the fact that land productivity trends in terms of degrada-

tion and/or restoration of environmental conditions is not straightfor-

ward. An illustration of this difficulty is the contradictory results

found in the literature. For example, Herrmann et al. (2014) found no

strong correlation between NDVI trends and the perceptions of envi-

ronmental conditions among the local population in Senegal, and

Gonzalez-Roglich et al. (2019) showed recently that the land produc-

tivity indicator was able to detect at global scale the effect of many

sustainable land management practices as increases in primary pro-

ductivity over time.

4.3 | Towards a land degradation common
reporting framework

Understanding changes in the productive capacity of land is critical

for assessing the impact of land management interventions, its long-

term sustainability and climate-derived impacts which could affect

ecosystem resilience and human livelihoods (Teich et al., 2019).

Contrary to the UNCCD approach (which does not dissociate

factors), the method we proposed further tackles our understanding

of the factors influencing changes in vegetation productivity and

reflects the land condition without any negative judgment and mak-

ing a direct link with land degradation. The final interpretation of

land conditions (land degradation or land restoration) is made

according to local stakeholders' knowledge and views as illustrated

in this article.

Variability in the estimation and location of land degradation may

have impacts on the identification of these areas, and the constraints

and opportunities for their restoration and the sustainable manage-

ment of land resources. A single definition of land degradation would

not meet with global consensus due to the site-specific nature and

context of land degradation. One suggestion could be that each coun-

try develop its own definition—or definitions—of land degradation, as

for the forest definition in the reduction of emissions from deforesta-

tion and forest degradation, conservation, sustainable management

and restoration of carbon stocks (REDD+) mechanism. These defini-

tions could be developed from the collection of information on the

perceptions of representative stakeholders.

5 | CONCLUSIONS

In this study, we characterized and mapped factors in land productiv-

ity changes over the 2000–2016 period in order to produce ele-

ments that make it possible to establish a land degradation

estimation at the country scale, using remote sensing data. Overall,

our study evidenced that land productivity decreased and threat-

ened one-quarter of Mozambique between 2000 and 2016. We

showed that a large part of this negative trend could be mainly

related to anthropogenic activities compared with climate change

factors. We demonstrated from hypothetical study cases that some

of the subjectivity in the assessment of degradation relates to the

use and goal under consideration.

This study provides a consistent, up-to-date and spatial estima-

tion of land degradation in Mozambique, which can help decision-

makers to design national and locally relevant land degradation mitiga-

tion policies or programs to reach land degradation neutrality by

2030. The novelty of this study was to better describe land conditions

and discuss some improvements to the existing UNCCD methods for

assessing land degradation. Our findings highlight that applying NDVI

trend analysis for land degradation assessments remains a challenge

both in implementation and interpretation. For effective policies to

combat land degradation there is a need for research to develop or

improve methodologies and agreements on definitions.
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