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Abstract

Background: Accurate, high-resolution mapping of aboveground carbon density (ACD, Mg C ha-1) could provide
insight into human and environmental controls over ecosystem state and functioning, and could support
conservation and climate policy development. However, mapping ACD has proven challenging, particularly in
spatially complex regions harboring a mosaic of land use activities, or in remote montane areas that are difficult to
access and poorly understood ecologically. Using a combination of field measurements, airborne Light Detection
and Ranging (LiDAR) and satellite data, we present the first large-scale, high-resolution estimates of aboveground
carbon stocks in Madagascar.

Results: We found that elevation and the fraction of photosynthetic vegetation (PV) cover, analyzed throughout
forests of widely varying structure and condition, account for 27-67% of the spatial variation in ACD. This finding
facilitated spatial extrapolation of LiDAR-based carbon estimates to a total of 2,372,680 ha using satellite data.
Remote, humid sub-montane forests harbored the highest carbon densities, while ACD was suppressed in dry
spiny forests and in montane humid ecosystems, as well as in most lowland areas with heightened human activity.
Independent of human activity, aboveground carbon stocks were subject to strong physiographic controls
expressed through variation in tropical forest canopy structure measured using airborne LiDAR.

Conclusions: High-resolution mapping of carbon stocks is possible in remote regions, with or without human
activity, and thus carbon monitoring can be brought to highly endangered Malagasy forests as a climate-change
mitigation and biological conservation strategy.
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Background
The spatial distribution of carbon stored in the above-
ground tissues of vegetation - also known as above-
ground carbon density (ACD; units of Mg C ha-1) - is a
time-integrated expression of ecological and land-use
processes ranging from photosynthesis and nutrient
cycling to disturbance and climate change. Spatial varia-
tion in ACD is also the largest source of uncertainty in
monitoring carbon emissions for voluntary carbon offset
markets and for developing international action for

Reduced Emissions from Deforestation and Forest
Degradation (REDD) at national and sub-national levels
[1-4]. Mapping the geographic patterns of carbon sto-
rage is thus a high priority in scientific, conservation,
and resource-management communities.
Carbon mapping efforts have proven challenging for a

variety of reasons. Field inventory plots are critically
important at local scales, but they are time consuming,
costly, and limited by accessibility. As a result, they
usually do not capture the variation in ACD that exists
throughout the environment [5]. This is particularly true
in human-dominated landscapes, or in remote areas that
may harbor remaining forests, and these two scenarios
have become ubiquitous in many tropical regions [6].
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Madagascar is an important example of these challenges;
high rates of deforestation and degradation have trans-
formed millions of hectares of dry, mesic and humid
tropical forest, leaving highly fragmented landscapes in
most regions [7,8]. Remaining forests cover up to 15%
of Madagascar, and thus the vast majority of landscapes
are partially-vegetated, human-dominated systems [9].
The spatial heterogeneity of vegetation cover and struc-
ture in these landscapes has resulted in a poor overall
knowledge of their role in storing carbon.
The remaining forests of Madagascar are also often

remote, whether by distance or by difficult terrain, and
they are among the last strongholds of the unique forest
flora and fauna remaining on the island. These remote
forests appear partially to fully intact in satellite imagery
[9,10], but satellite sensors do not resolve their carbon
stocks at a spatial scale sufficient to understand ecologi-
cal controls over those stocks. As a result, we know lit-
tle about controls over carbon storage in Malagasy
forests - information that is critically needed to support
their inclusion in carbon retention strategies to conserve
them.
Mapping ACD beyond the reach of field plots is an

important step toward resolving regional carbon
dynamics in Madagascar and elsewhere. Airborne Light
Detection and Ranging (LiDAR), when combined with
field plots, has provided spatially contiguous, high-reso-
lution ACD estimates of temperate and tropical forests
[e.g., [11-13]]. Airborne systems can readily acquire
thousands of hectares of data per day, changing our
understanding of environmental controls over carbon
stocks. Airborne LiDAR-based mapping of tropical for-
est ACD has also proven highly precise and accurate,
with errors recently becoming indistinguishable from
those derived from field measurements [14].
Despite the carbon mapping accuracy, resolution, and

extensive coverage provided by airborne LiDAR, these
approaches also reach geographic limitations due to
cost, so additional methods are required to extend
LiDAR-based carbon estimates to even larger regions.
Importantly, the pronounced heterogeneity of carbon
stocks in Madagascar requires high spatial resolution
when extending to the regional or whole-country scale.
One approach to extrapolating outside the LiDAR cov-
erage is to stratify the region into narrow vegetation
classes, and then to apply additional analyses to account
for vegetation losses and gains from deforestation,
degradation and land abandonment [15,16]. This has
proven useful in regions already containing detailed
vegetation maps derived from satellite or other sources,
resulting in regionally-integrated uncertainties in total
carbon storage of just a few percent or less [17]. How-
ever, such highly stratified maps of vegetation type do
not exist for many areas of the tropics [2,18], and other

means are necessary to extend sampling-based estimates
of ACD - whether taken from field, aircraft or satellite
measurements - to broader geographic scales. Again,
Madagascar serves as an example of the challenges
faced when mapping carbon stocks in most tropical
regions, where vegetation maps may not exist or may
only be based on coarse representations of geology [e.g.,
[19]]. A more detailed, top-down approach utilizing
satellite imagery is required; however, the most widely
available optical satellite images from NASA Landsat or
MODIS (Moderate Resolution Imaging Spectrometer)
do not directly measure carbon stocks. Rather, optical
sensors are most sensitive to vegetation type and cover
[20], and so spatial extrapolation of LiDAR-based bio-
mass estimates using optical satellite data alone is sub-
ject to substantial uncertainty. Synthetic aperture radar
(SAR), which is sensitive to aspects of canopy texture
and structure, can be related to biomass stocks [21,22],
but direct SAR-based metrics of forest biomass are lim-
ited by saturation of the signal in vegetation harboring
more than 50-70 Mg C ha-1, depending upon radar fre-
quency [23,24]. Another option is to evaluate how car-
bon stocks vary with topography and other geologic
drivers mapped with SAR, but relationships between
topography or geology and ACD have rarely been
explored [25,26].
Here, we present the first large-scale, high-resolution

mapping estimates of aboveground carbon stocks in one
northern and one southern region of Madagascar. Using
airborne LiDAR-based measurements of ACD, calibrated
to a network of field plots, we quantitatively assessed
which topographic and land-cover factors best predicted
ACD across environmental and land-use gradients in
each region. We then used this information, combined
with spaceborne optical and SAR data, to extend field
and LiDAR carbon estimates to the regional level. Our
underlying goal was to understand both human and
environmental controls over the carbon landscape in
some of the most remote portions of Madagascar.

Results and discussion
The northern (N) region encompassed 289,766 ha of
core study area within 659,592 ha of total area (Figure
1). The core study area was defined by an ongoing
REDD+ project, whereas the total area was defined by
our satellite coverage. The N region contained forests
broadly classified as mid-elevation (600-2900 m a.s.l.)
evergreen humid tropical forest, underlain by basement
rock formations [19]. Above 2100 m elevation, forest
vegetation transitions to montane Philippia shrubland
[19]. Below 900 m, much of the region is deforested,
persisting as a spatially complex mosaic of grassland,
bare substrate (rock and soil) and patches of woody
vegetation protected by local-scale terrain variation (e.g.,
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gullies, steep slopes, etc.). The southern (S) region
spanned 495,767 ha of core study area within 1,713,088
ha of total area. This area crosses a strong orographic
climate boundary incorporating low- to mid-elevation
evergreen humid tropical forests on windward slopes in
the east, to deciduous, seasonally dry, or “spiny” forests
and shrublands to the west (Figure 1). Geologic sub-
strates vary from basement rock formations in the
humid sub-montane forests to basalt and sandstone for-
mations underlying the drier spiny forests. Elevation in
the S region reaches a maximum of 1968 m a.s.l., and
areas below about 500 m have undergone substantial
clearing in the past.

Field Calibration of Airborne LiDAR
Histograms of the plot-based estimates of ACD are
shown in Figure S1 (Additional file 1). The mean (± s.
d.) ACD of dry forests was 14.5 (8.1) Mg C ha-1, with a
range of 1.4 to 28.9 Mg C ha-1. The mean (± s.d.) ACD

humid forest plots was 99.5 (58.5) Mg C ha-1, with a
range of 9.3 to 257.4 Mg C ha-1. Following the proces-
sing of the LiDAR data to MCH, we predicted ACD
within and across all study regions with high precision
(r2 = 0.88) and accuracy (RMSE = 21.1 Mg C ha-1) (Fig-
ure 2). The power-function scaling coefficient of 1.3 is
slightly lower than those derived for forests in the Neo-
tropics, resulting in a nearly linear MCH-to-ACD rela-
tionship [discussed in [27]]. An average pixel-level error
of 21 Mg C ha-1 compares favorably with past studies
showing uncertainties of 40 Mg C ha-1 or more in tem-
perate and tropical forests [11,12,17,28,29].

Landscape Controls over LiDAR-derived ACD
Our airborne LiDAR mapping results revealed the influ-
ence of human activity, as well as underlying climatic
and physiographic controls, in shaping ACD patterns
throughout northern and southern Madagascar. High
levels of deforestation have reduced standing carbon
stocks in many lowland areas, as evidenced by the sharp
decline in LiDAR-derived canopy height in zones of
human activity (Figure 3). Yet this signal of human-
mediated ACD suppression did not obscure natural
ACD gradients controlled by climate and elevation. For-
ests found at higher elevations were less likely to be
deforested or degraded, and were also more likely to
contain the tallest forest canopies harboring higher car-
bon stocks.
To further quantify the controls over ACD, we spa-

tially integrated the LiDAR-based carbon mapping
results in both N and S regions, and found that ACD
peaked at intermediate elevations (Figure 4). Moreover,
we found major differences in ACD distributions and

Figure 1 (A) Madagascar with the 659,592 ha northern and
1,713,088 ha southern study regions. (B-C) Airborne LiDAR
sampling coverage is shown in white boxes. In panels B-C, the
background imagery shows the fractional cover of photosynthetic
vegetation (PV; green), non-photosynthetic vegetation (NPV; blue)
and bare soil (pink-red) derived from CLASlite analyses of Landsat
satellite imagery. Field calibration plots are shown as red dots (not
to scale).

Figure 2 Relationship between mean canopy profile height
(MCH) derived from airborne LiDAR and plot-based
aboveground carbon density (ACD) across a wide range of
vegetation types and conditions, including degraded forests, in
Madagascar.
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medians along elevation gradients, and these patterns
differed in the N and S regions. In the north, the low-
lands (< 1050 m) harbored a highly skewed distribution
of carbon storage, resulting from human-driven forest
losses leading to low carbon levels; yet with a sufficiently
large, high-resolution regional sample size, we also
found that ACD can reach very high values in surviving
lowland forests. In effect, the right side of the distribu-
tion indicates maximum potential carbon stocks in the
lowlands, which exceeded 200 Mg C ha-1. In contrast to
N lowland carbon values, the S region harbored very
suppressed ACD levels (Figure 4), and this was due to
the drier conditions that support lower-biomass spiny
forests as well as extremely high forest loss rates.
In both the N and S regions, aboveground carbon

stocks reached their highest median levels at mid-eleva-
tion (Figure 4). In the north, we found that ACD peaked
in the 1350-1650 m zone, whereas highest median
values were closer to 700 m in the south (Appendix 3,
Additional file 1). Above these zones of highest carbon
storage, both ACD median and variance decreased stea-
dily to much lower and narrower ranges in montane

conditions. The sharpest high-elevation decline in ACD
occurred above 1950 m in the N region, where forests
give way to short-statured Philippia shrublands [19]. In
the S region, the decrease in ACD at higher elevations
was less pronounced. We note, however, that ACD
levels in the S sub-montane (e.g., 1100-1500 m) and
montane (> 1500 m) zones were lower and less variable
than in the N forests at comparable elevations. Impor-
tantly, most ACD distributions were non-normal, sug-
gesting that without very large sample sizes, or carefully
distributed sampling, field plots alone may not accu-
rately resolve carbon stock variation.
Deforestation, disturbance and regrowth all imparted

differences in standing carbon stocks (Appendix 3,
Additional file 1). In the N region, secondary regrowth
from deforestation of at least 5 and 10 years of age
resulted in mean (± s.d.) ACD of 39.4 (29.4) and 52.9
(49.5) Mg C ha-1, respectively. Forested areas subjected
to disturbance (also known as degradation), as mapped
with CLASlite, contained 70.9 (± 56.6) Mg C ha-1. In
the S region, carbon stocks in forest regrowth varied
slightly by elevation (Appendix 3, Additional file 1), but
were generally between 16 and 49 Mg C ha-1, depending
upon age and whether they were deforested or disturbed
prior to assessment. In sum, aboveground carbon stocks
in forest regrowth were extremely variable, but consis-
tently much lower than in intact forest.
Statistical analyses indicated that SRTM elevation and

CLASlite PV cover fraction were the factors most clo-
sely associated with landscape-scale, LiDAR-based ACD
variation (Figure 5). Although all variables were signifi-
cantly correlated with ACD, soil fractional cover and
aspect generally explained less ACD variation (< 4%).
Variables explaining more than 4% of the variation, such
as slope and REM in the S region, were also strongly
correlated with elevation and PV cover. Based on this
finding, we conducted multiple regression analyses to
determine the total ACD variation that could be
explained by a combination of the variables. Models
including elevation and PV explained 27 and 67% of the
overall variation (adjusted r2) in the N and S regions,
respectively (Appendix 4, Additional file 1). In both
regions, other factors including slope, REM, aspect and
bare soil fraction did not contribute to explanatory
power of the multiple regression beyond that explained
by elevation and PV. As a result, these additional factors
were excluded from the final regional stratification.
Although the regression analyses suggested that directly
modeling ACD using input terrain variables may be
tractable, second-order polynomials did not provide suf-
ficient fidelity to account for the non-linear influence of
the variables (e.g., elevation and PV in the S region; Fig-
ure 5b), suggesting that a highly complicated model
would be required. A stratified approach, therefore,

Figure 3 Example LiDAR-based maps of aboveground carbon
stocks highlighting: (A) effects of deforestation on humid, low-
elevation forests in the northern region, and (B) a natural
gradient in elevation and plant available water, from dry
forests with low canopy height in the lowlands to humid
forests in the uplands.
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maintained greater parsimony and potentially higher
accuracy. In addition, any potential class-specific influ-
ences over ACD can be captured using a stratification
approach, whereas a continuous model often smoothes
them artificially.

Regional Sources of Carbon Stock Variation
Following stratification and application of the LiDAR-
based ACD estimates to the full regional study extent, a
comparison of LiDAR-derived ACD and the regional-
scale stratified mapping of median ACD revealed the
effectiveness of the stratification approach (Figure 6).

Stratification by CLASlite forest cover, forest change, PV
cover fraction, and SRTM elevation yielded high-resolu-
tion ACD variation that closely matched LiDAR-derived
ACD. Repeated comparisons, such as that in Figure 6,
suggested that scaling LiDAR data regionally in this
manner is tractable if the satellite data capture the
detailed variation in topographic, environmental and
land-use effects at appropriate spatial scales. Our experi-
ence suggests that 1 ha or higher resolution is required
to support this scaling step.
The relative error between high-resolution LiDAR-

scale ACD maps and regional ACD maps was calculated

Figure 4 LiDAR-derived frequency distributions of forest ACD at 30-m resolution by elevation class in the northern and southern
regions of Madagascar. Bimodal distributions in the southern region reflect the contrast between spiny forest (nearly all of which are found <
500 m elevation) and humid forests (which are nearly absent at elevations < 500 m due to heavy deforestation and degradation). At high
resolution, ACD can peak at very high values (> 300 Mg C ha-1), but we truncate here to facilitate visualization because these high-ACD outliers
are much less than 0.1% of any class.
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as the percent difference between the square root of the
median squared residual value (predicted ACD -
observed ACD) and mean observed ACD. We used the
median rather than mean squared residual value to
compensate for highly right-skewed distributions of
pixel level error. Thus, our pixel-level uncertainties
reflect median uncertainties. We estimated a pixel-level
uncertainty of 35% and 10% in the N and S regions,
respectively, at 1 ha resolution. Greater uncertainty in
the N region is caused by generally weaker relationships
between environmental variables and measured ACD
(Figure 5). Nonetheless, a 35% uncertainty at the pixel
level is on par with errors inherent to field inventory
plots [30,31], and when averaged over much larger juris-
dictional scales of thousands to millions of hectares, the
overall uncertainty drops to extremely low values [3,17].
Additional comparisons between regionally-extrapo-

lated ACD and high-resolution forest cover were made
by overlaying regional ACD maps on Google Earth ima-
gery (Figure S2, Additional file 1). In one southern land-
scape, the largest tree crowns were clearly aligned with
areas of high ACD (reds), whereas areas containing
small-statured vegetation (naturally or from land use)
aligned with low-to-moderate ACD (yellow-green), and
no ACD (blues) estimates. In one portion of the south-
ern montane landscape, the abrupt orographically-
mediated transition from high biomass windward forests
(red) to lower biomass leeward forests (orange) was evi-
dent (Figure S2, Additional file 1). This break was so
distinct, it was expressed over just a few hundred meters
of distance. Similar extreme gradients can be found on
other tall oceanic islands where orographic effects are
common [32]. Close inspection against Google imagery
also revealed that suppressed ACD levels along slopes
(greens-blues; Figure S2, Additional file 1) were caused
either by natural landslides or human activities.
The combined satellite and LiDAR-based results pro-

vided a synoptic view of aboveground carbon stocks
throughout the much larger N and S mapping regions
(Figure 7). In the N region, the highest ACD levels were
found in upland zones farther from human activities,
particularly in sub-montane hillslope positions where
substrate fertility and climate harbor tall forests
[19,33,34]. Sub-montane to montane forests in the S
region harbored as much carbon in aboveground tissues
as found in N forests, but the orographic effect confined
the highest biomass areas to east-facing slopes (Figure
7b). Across both study regions, very little lowland intact
forest remains, and in the south, much of the spiny for-
ests either harbor naturally low carbon levels or have
been lost to deforestation. Together these two regions
are geographically important examples of the carbon
landscape persisting throughout Madagascar today.

Figure 5 Correlation matrices relating site factors to ACD,
including elevation a.s.l. (Elev in m), fraction of photosynthetic
vegetation as determined by CLASlite (PV), slope (degrees),
REM (elevation above nearest drainage), fraction of soil cover
as determined by CLASlite, and aspect for the (A) northern
region and (B) southern region. The scatter plots display the
following information: blue points indicate individual pixel
values, open circles represent the median value within each of
ten bins evenly spaced along the horizontal axis (these are
intended to assist in visualization and do not impact model
fit), lines are the best fit polynomials for the data being
compared. In the lower left portion of the matrix are the r2 values
for the best-fit polynomials; *** indicates statistical significance of P
< 0.001.
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Error Analyses
Simulations of both reduced numbers of field plots as
well as reduced LiDAR coverage demonstrated that our
sampling effort for both field plots and airborne data
was effective at capturing the true variation in ACD.
When considering the number of field plots needed to
produce a consistent LiDAR-to-ACD calibration model,
we found that regression standard error (SEE) increased
rapidly up to ~ 20 plots, but stabilized within ~ 2 Mg C
ha-1 of the full regression SEE (21.1 Mg C ha-1) at just
24 of the 83 plots (Figure 8). Additional plots therefore
had little effect on the regression SEE. Likewise, the
ability of the simulated calibrations to accurately predict
a set of 4 randomized field plots (not included in the
calibration) was initially poor, but stabilized within ~ 2
Mg C ha-1 of the full regression RMSE with just 24 of
the 83 plots. The stabilization of the LiDAR-to-plot cali-
bration at ~ 24 field plots is comparable to that found
in a previous Amazonian study [17].
As LiDAR coverage was statistically reduced, we found

that median ACD remained stable for most vegetation
classes - within 10% of the true median value - until the
coverage declined below ~ 300 ha (Figure S3, Additional
file 1). However, for some classes, at least 2000 ha of
LiDAR sampling was required to be within 10% of the
true median. Conservatively, median ACD values reported
for classes with > 500 ha of LiDAR coverage can be con-
sidered to have very high confidence. These large classes
account for 90% and 88% of the core study areas in the N
and S regions, respectively (Appendix 3, Additional file 1).
These results point to the importance of obtaining thou-
sands of samples in order to derive the true median and
distribution of ACD throughout the landscape.

Conclusions
Terrestrial carbon landscapes depict the integrated
effects of many ecological and socio-economic

processes occurring at spatial scales ranging from loca-
lized human activities (e.g., wood gathering) to synop-
tic climate-driven processes affecting vegetation
growth and carbon storage. As a result, carbon maps
are most informative when created over large environ-
mental gradients while maintaining high spatial resolu-
tion. With a combination of airborne LiDAR, field
calibration plots and satellite data, we mapped above-
ground carbon stocks throughout two remote regions
of Madagascar covering a total of 2,372,680 ha. Despite
the widespread evidence of human activities through-
out the regions, we found that large-scale natural con-
trols over aboveground carbon density were driven
primarily by physiography and vegetation cover. These
results strongly suggest that environmental surrogates
can be used to extend direct observations made by air-
borne LiDAR to much larger geographic scales. Our
results support other work on biomass surrogates at
coarser resolutions [21,35], but the high-resolution
regional stratification and airborne LiDAR approach
presented here yields carbon storage detail that can be
validated point by point through a large region. The
global and regional approaches are complimentary and
could be combined in future work to improve carbon
mapping at national and global levels.
Here our regionally mapped carbon stocks are the

result of using very high resolution airborne LiDAR to
understand the physiographic and vegetation cover con-
trols, and then applying that knowledge outside of the
LiDAR coverage using high resolution satellite data. Our
previous efforts along these lines have relied on habitat
classification maps, often provided by government agen-
cies, but in this case, comparable effectiveness was
achieved using freely available SRTM and Landsat ima-
gery. The results thus suggest that verifiable, high-reso-
lution carbon assessments can be accomplished in
remote regions of the tropics. The high resolution and

Figure 6 Comparison of (A) median ACD applied to one southern humid forest landscape according to the final regional, satellite-
based stratification, and (B) direct mapping of ACD using airborne LiDAR with the MCH-to-ACD model from Figure 2. The colors,
image stretch, and units are the same in both images.
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accuracy of the results may support new efforts to sus-
tain and expand Malagasy forests using current volun-
tary and planned compliance carbon emission offset
strategies.

Methods
Regional Pre-flight Stratification
Pre-flight stratification of the N and S regions was
required to direct airborne LiDAR sampling (Figure 9).

Figure 7 Aboveground carbon density (ACD) across the (A) northern and (B) southern region of Madagascar. Median ACD reflects the
median value for a habitat class as measured within the LiDAR coverage for that class. Black areas are unobserved or water bodies.
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Following Asner [15], we developed a map of vegetation
types and forest cover. The vegetation map was derived
using supervised classification with a k-nearest neighbor
algorithm of 12 multi-spectral images at 10 m resolu-
tion, collected between January and May 2009 by satel-
lite SPOT 5 (SPOT Image, Toulouse, France). The
derived vegetation maps yielded 8 and 10 classes in the

N and S regions, respectively. The regions were simulta-
neously mapped for forest cover, deforestation, degrada-
tion and regrowth using the CLASlite system [36], as
described in detail by Asner et al. [17]. Combining vege-
tation and CLASlite maps resulted in 15 and 17 classes
for the N and S region, respectively. SRTM data were
not used during this pre-flight stratification process,
thereby facilitating an independent analysis of terrain
controls over ACD later in the study, and prior to final
stratification.

LiDAR Mapping
The pre-flight stratification maps were used to direct
airborne LiDAR sampling. Specifically, LiDAR polygons
were placed over each study region to maximize cover-
age of each pre-flight stratum while attending to aircraft
logistical constraints imposed by mountainous terrain
and winds. A total of 12 and 10 polygons ranging in
size from 2,000 ha to 12,000 ha were selected for the N
and S regions, respectively (Figure 1). We used the Car-
negie Airborne Observatory (CAO) to collect the LiDAR
data [37]. The flights were conducted at 2000 m above
ground level, providing LiDAR sampling at 1.12 m
LiDAR spot spacing with a 28-degree field of view, 50
kHz pulse repetition frequency and 50% overlap
between adjacent flight lines within each mapping poly-
gon. The aircraft maintained a ground speed of 95 knots
or less. LiDAR spatial errors are less than 0.15 m verti-
cally and 0.36 m horizontally (RMSE). The total LiDAR
coverage was 56,921 ha (19.6% of the core study area)
and 70,780 ha (14.3%) in the N and S regions,
respectively.

Field Plot Measurements
We estimated ground-based ACD in 83 circular plots of
up to 30 m radius, or 0.28 ha (Figure 1). Of these, 19
were located in N humid forests, 28 in S humid forests,
and 36 in S spiny forests. We used the plots to calibrate
the LiDAR data to ACD, and thus we placed the plots
in a wide range of conditions, from dry to humid forests
and from nearly deforested land to degraded forests to
intact, closed canopy forest. This approach reduced the
number of plots required overall, while providing the
biophysical variation needed to calibrate the LiDAR. We
used a nested sampling design in each plot, which dif-
fered depending on forest structural complexity and
thus climactic zone. For humid forest plots, we included
all trees > 50 cm in diameter at breast height (dbh, 1.3
m from the ground) or above buttress inside a radius of
30 m from the plot center, all trees > 20 cm dbh inside
a radius of 14 m, and all trees > 5 cm dbh inside a
radius of 4 m. In spiny forests, we included all trees > 5
cm dbh inside a radius of 20 m and all trees > 0 cm
dbh inside a radius of 5 m. We located each plot center

Figure 8 Change in regression Standard Error of the Estimate
(SEE) for a series of airborne LiDAR calibration models using
multiples of 4 field plots (mean of 1000 runs per model). For
each run, observed carbon values for a random set of 4 field plots
not used in the calibration were compared to the predicted values
in terms of their root mean square error (RMSE).

Figure 9 Stepwise pathways used to stratify each study region:
(a) Forest cover and regrowth mapping with multi-temporal
Landsat imagery in CLASlite; (b) Combining CLASlite outputs
from (a) and a classified vegetation map for regional pre-flight
stratification to direct airborne LiDAR sampling; (c) Combining
CLASlite outputs from (a) and elevation from the NASA Shuttle
Radar Topography Mission (SRTM) in final regional
stratification to capture regional ACD variation.
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using a global positioning system (GPS) with a survey-
grade receiver (GS50+, Leica Geosystems, St. Fallen,
Switzerland). The GPS data were later differentially cor-
rected, in most cases yielding < 1 m positional error.
For some plots in the S humid forests, Leica GPS recep-
tion was poor and thus we utilized a Garmin CS+ recei-
ver (Garmin Ltd., Olathe, Kansas) with the point
averaging function enabled for several hours. When
comparing Garmin and Leica data, we found that the
loss of accuracy with Garmin data was 1-4 m. Allo-
metric methods for estimating plot-level carbon stocks
made use of both general [38] and recent, locally-devel-
oped models [39], as detailed in Appendix 1 (Additional
file 1).

LiDAR-to-Plot Calibration
We derived surface (top-of-canopy) and ground digital
elevation models (DEM) from the airborne LiDAR data.
We calculated the vertical distribution of LiDAR points
above ground by binning them into volumetric pixels
(voxels) of 5 × 5 m spatial resolution with 1 m vertical
resolution. We then divided the number of points in each
voxel by the total number of lidar points in that column,
yielding the percentage of lidar points that occurred in
each voxel. This organization of LiDAR data points
allows the generation of several indices that have proven
to be highly correlated with plot-based biomass estimates
[12,29,40-43]. Previous work repeatedly demonstrated
that mean canopy profile height or MCH, which is the
weighted height of the lidar point cloud in a 5 × 5 kernel,
is highly correlated with ACD in tropical forests
[17,28,44]. Thus we regressed ground-based ACD against
LiDAR MCH in the form of a power model:

y = axb + xkε (1)

where x is MCH, y is ACD, and a, b, and k are model
parameters. A non-arithmetic error term (xkε) was used
to account for heteroscedasticity that typifies MCH-to-
ACD relationships [e.g., [28]]. This approach is analo-
gous to fitting a linear model to log-transformed vari-
ables, but avoids the need for back-transformation [45].
The model was fit using maximum likelihood in the R
programming language (v.9.2, R Development Core
Team 2009). We conducted additional analyses to deter-
mine the dependency of our LiDAR-to-ACD model on
the number of field plots (below under Error Analyses).
We also considered the dependency of our LiDAR-to-
ACD model on the spatial resolution at which the equa-
tion was constructed (Appendix 2, Additional file 1).

LiDAR Carbon and Terrain Analysis
We tested the degree to which terrain and forest cover
variables were related to LiDAR-derived ACD. Our goal

was to develop an improved method to scale up the
LiDAR-based data to the regional level using freely
available satellite imagery. To that end, we examined
relationships between ACD and elevation data, the latter
provided by NASA’s Shuttle Radar Topography Mission
(SRTM; 90 m resolution), as well as CLASlite forest
cover data derived from Landsat imagery (30 m resolu-
tion). To improve signal via averaging, and to reduce
errors due to misalignment among diverse image data
types, we convolved all variables to 1 ha spatial resolu-
tion prior to analysis using a spatial averaging filter.
Within areas under airborne LiDAR coverage, we con-
sidered several SRTM-derived variables, including eleva-
tion, slope, aspect, and height above nearest stream (i.e.,
the vertical distance from a point on the landscape to
an interpolated water table, also known as a relative ele-
vation model or REM). From CLASlite, we considered
the fractional cover of photosynthetic vegetation (PV)
and the fractional cover of bare soil (described in detail
by Asner et al. 2009). We considered the influence on
ACD of all variables-both individually and in combina-
tion-at 1 ha resolution using correlation and ordinary
linear regression analyses with the R programming lan-
guage (v.9.2, R Development Core Team 2009).

Final Regional Stratification and Carbon Mapping
Final stratification was intended to utilize information
obtained from the LiDAR-based environmental controls
analysis, as well as the deforestation and forest distur-
bance results from CLASlite (Figure 9). We first seg-
mented the region into forest, non-forest, and regrowth,
derived from CLASlite analysis of Landsat images from
four periods; 1990, 2000, 2005, and 2010. The CLASlite
analysis provided a detailed representation of 2010 forest
condition, enhanced by the consideration of past land-
cover change. The broader classes of forest, non-forest
and regrowth were further stratified to capture regional
ACD variation. This process was guided by existing
scientific knowledge of the ecology and terrain of Mada-
gascar, as well as statistical considerations to limit over-
stratification.
We stratified the forest class using the SRTM- and

CLASlite-derived inputs that best predicted ACD in
forested areas at the LiDAR scale. As presented in the
results (Landscape Controls over LiDAR-derived ACD),
the best predictors were SRTM elevation and CLASlite
PV cover fraction. The nature of the influence of these
variables on LiDAR-derived ACD suggested that a strati-
fied approach to carbon mapping was preferable to
modeling ACD in continuous fashion (see results).
Thus, in the N region, we parsed the landscape into 150
m vertical increments, creating 13 elevation strata. In
the S region, we created a total of 11 elevation strata
with 100 m elevation increments below 500 m
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(characterized by dry, spiny forests and flatter terrain),
and 200 m increments above 500 m in elevation (stee-
per, variable terrain containing the region’s remaining
humid forests). The two regions were further stratified
by PV cover fraction with thresholds of 80-90% and 91-
100% PV in the N region and 60-70%, 71-80%, 81-90%,
and 91-100% in the S Region. Our approach to the S
region employed a lower PV threshold to better capture
dry spiny forests, which often contain lower PV fractions
due to naturally open canopies and space between trees
and other woody plants. The intersection of elevation
and PV cover fraction strata produced 26 forested
classes in the N region and 44 classes in the S region.
In both regions, we used CLASlite [36] to stratify

deforested and disturbed lands (e.g., areas entering a
non-forest category following previous mapping as forest
cover), as well as those in regrowth following deforesta-
tion or disturbance. Here, we define disturbance as the
diffuse thinning of forest cover. We split forest regrowth
following deforestation into categories of greater than 5
or 10 years since the most recent detection of deforesta-
tion. We created another class for regrowth following
forest disturbance detected in any year. Areas not in for-
est and not undergoing regrowth following deforestation
or forest disturbance made up the broad non-forest
class, which we stratified into five 20% intervals of PV
cover fraction. In the S region, all regrowth and non-
forest classes were further parsed by a 500 m elevation
threshold that generally corresponds to the separation of
lowland, dry spiny forests and mid-elevation humid for-
ests. Combined, this yielded 34 total classes in the N
region and 52 in the S region. Using this final stratifica-
tion, we mapped ACD at 1.0 ha resolution by assigning
the LiDAR-derived median carbon value for each class
to the area occupied by that class across the regional
maps.

Error Analyses
We determined the sensitivity of our LiDAR ACD
model to the number of field calibration plots used by
fitting simulated calibration models with randomized
multiples of 4 plots (~ 5% of the data), from 4 to 76
plots (up to 90% of 83 total plots) [17]. We repeated
this simulated calibration 1000 times to yield a mean
regression standard error of the estimate (SEE) at every
interval of 4 field plots. For each run, we then assessed
the ability of the model to predict (as measured by the
RMSE) the carbon density of an additional set of 4 ran-
domized field plots not included as part of the simulated
calibration.
To determine the amount of LiDAR coverage needed

to accurately characterize inter-class variation in ACD,
we simulated reduced LiDAR coverage by successively
excluding portions of all LiDAR flight boxes. To do so,

we reduced the widths of all boxes beginning at a mini-
mum width of 30 m (a single pixel of our LiDAR-
derived carbon map), doubling repeatedly up to 3840 m
width (an approximation of the largest width that was
divisible by the pixel size of 30 m). With each succes-
sively more limited regional LiDAR sample, we recom-
puted median carbon for each vegetation class in both
the N and S study areas, and compared the resulting
estimates to those determined using the full LiDAR
coverage.

Additional material

Additional file 1: Appendices. The appendix contains text, figures and
tables that provide detail on satellite, aircraft, and field data collection,
processing and analysis.
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