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Abstract

This paper aims to investigate the potential of using soil-landscape pattern extracted from a soil map to predict soil distribution at unvisited
location. Recent machine learning advances used in previous studies showed that the knowledge embeddedwithin soil units delineated by experts can
be retrieved and explicitly formulated from environmental data layers However, the extent to which the models can yield valid prediction has been
little studied. Our approach is based on a classification tree analysis which has underwent a recent statistics advance, namely, stochastic gradient
boosting. We used an existing soil-landscape map to test our methodology. Explanatory variables included classical terrain factors (elevation, slope,
curvature plan and profile, wetness index, etc.), various channels and combinations of channels from LANDSAT ETM imagery, land cover and
lithology maps. Overall classification accuracy indexes were calculated under two validation schemes, either taken within the training area or from a
separated validation area. We focused our study on the accuracy assessment and testing of two modelling parameters: sampling intensity and spatial
context integration. First, we observed strong differences in accuracy between the training area and the extrapolated area. Second, sampling intensity,
in proportion to the class extent, did not largely influence the classification accuracy. Spatial context integration by the use of a mean filtering
algorithm on explanatory variables increased theKappa index on the extrapolated area bymore than ten points. The best accuracymeasurements were
obtained for a combination of the raw explanatory dataset with the filtered dataset representing regional trend. However, the predictive capacity of
models remained quite low when extrapolated to an independent validation area. Nevertheless, this study offers encouragement for the success of
extrapolating soil patterns from existing soil maps to fill the gaps in present soil map coverage and to increase efficiency of ongoing soil survey.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The increasing amount of numerical data combined with fast
development of new information processing tools change
significantly the way in which information on soils is acquired
and managed. The use of Digital Soil Mapping (DSM), based on
geographical information science, statistics and pedology
(McBratney et al., 2003), is continuously increasing. The generic
framework of Digital Soil Mapping has been defined by
McBratney et al. (2003) as scorpan-SSPFe (soil spatial prediction
function with spatially autocorrelated errors) method. It is based
on the seven predictive scorpan factors, a generalisation of
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Jenny's five factors, namely: (1) s: soil, other or previously
measured attributes of the soil at a point; (2) c: climate, climatic
properties of the environment at a point; (3) o: organisms,
including land cover and natural vegetation; (4) r: topography,
including terrain attributes and classes; (5) p: parent material,
including lithology; (6) a: age, the time factor; (7) n: space, spatial
or geographic position. Interactions between these factors are also
considered. Digital Soil Mapping has been tested in a wide range
of soil and scale mapping contexts throughout the world
(McBratney et al., 2003; Grunwald, 2006; Dobos et al., 2006).
It has been used to understand and quantify the relationships
between soils and their environmental attributes, mostly derived
from exhaustive and easy-to-access datasets such as Digital
Elevation Models (DEM) and remote sensing imagery. Recent
soil landscape predictive algorithms such as neural networks,
fuzzy logic or treemodel tools arosemainly fromdata-mining and

mailto:dominique.arrouays@orleans.inra.fr
http://dx.doi.org/10.1016/j.geoderma.2007.11.004


181C. Grinand et al. / Geoderma 143 (2008) 180–190
machine learning fields, also referred to as knowledge discovery
in a database in its overall process (Fayyad et al., 1996).

Digital soil mapping is computer-assisted production of a
digital map of soil type and soil properties (Dobos et al., 2006).
Predictive soil-landscape mapping usually involves two model-
ling approaches: (i) grouping observations (pixels) that present
homogenous attributes without prior knowledge (unsupervised
classification), or (ii) training the model on known soil type
observations (supervised classification). Irvin et al. (1997)
compared those techniques for soil-mapping purposes. Super-
vised approaches usually produce more suitable results as they
use available knowledge (training data) to fit the model and thus
lead to more interpretable maps. As related by Lagacherie
(2002), in a supervised classification process one makes the
implicit hypothesis that a soil-landscape is structured in such
way that it can be repeatedly predicted from a specific
combination of soil-forming factors. Therefore, a forthcoming
question is to what extent this hypothesis is true? An attempt to
digitally identify a relevant area for extrapolation was carried
out by thresholding a measure of distance to delineate a
representative area where the model could be applied, based on
elevation, slope and geology layers (Lagacherie et al., 2001).
Another approach involved the rule induction process to detect
a relevant physiographic region using entire reference areas as
single separate target classes (Bui and Moran, 2003). A key
issue is to have an independent and representative test sample to
get relevant estimates of the extrapolation accuracy (Dobos
et al., 2006). Land cover mapping by remote sensing faces
similar issues (Foody, 2002). More generally, soil landscape
Fig. 1. Location of
prediction from existing maps involves recovering the mental
model used by the soil surveyor to set up the map (Lagacherie
et al., 1995; Bui, 2004). This is a reverse soil mapping process
and has broad relevance to any other application of knowledge
discovery from natural resource maps (Qi and Zhu, 2003).

Classification tree analysis (CTA) is a modelling technique
that is being used increasingly (Lawrence et al., 2004). CTA has
several advantages that seem to suit well soil-landscape
modelling applications. One of the most interesting features is
that they are non-parametric, which means that no assumption is
made regarding variable distribution. Thus, it avoids variable
transformation caused, for instance, by bi-modal or skewed
histograms, which are frequent in soil class signatures. They are
non-sensitive to missing data, perform automatic variable subset
selection, are not sensitive to the inclusion of a large number of
irrelevant variables, and finally, they can handle quantitative and
categorical data, making it possible to integrate DEM-derived
variables, remote sensing bands or indexes together with
geology or land cover categorical layers. Efficiency of using
CTA for predictive soil landscape mapping was demonstrated in
a few studies at regional and subregional scale (Moran and Bui,
2002; Scull et al., 2005). Recent studies showed their potential
for land cover mapping from remote sensing images analysis
(Lawrence et al., 2004; Friedl and Brodley, 1997) and geo-
morphological mapping (Luoto and Hjort, 2005).

Asmentioned by Luoto and Hjort (2005), CTAwas practically
used in two linked but distinct purposes: induction and prediction.
Induction-oriented studies used CTA to uncover the relationship
between soil units or properties and environmental attributes, to
the study area.
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identify the discriminant variables and to compare rules de-
termined by the model with expert knowledge-based rules
(McKenzie and Ryan, 1999; Qi and Zhu, 2003; Bui, 2004; Bui
et al., 2006). On the other hand, prediction-oriented studies used
quantitative relationships between the soil response variables and
the environmental soil-forming factors to predict soil landscape
patterns over unvisited areas (Lagacherie et al., 1995, Moran and
Bui, 2002, Scull et al., 2005).

In this study, CTA is implemented with a recent statistic
advance, namely, stochastic gradient boosting (Freidman, 1999).
The boosted tree model is called Multiple Additive Regression
Tree (MART). Boosting aims to recursively create trees focusing
on the most misclassified observations, using a weighting
system. This technique showed significant improvements in the
classification accuracy compared to unboosted classification and
regression trees (Freidman, 1999). The purpose of this paper is to
evaluate the ability of this model to provide accurate soil
landscape prediction at an unsampled area. Thus, we focus our
analysis on a comparative study of two validation procedures. In
the first validation procedure, we separate two pixel populations
within a training area. The calibration of MART model is made
on one population and the validation on the other one. In the
second validation procedure, we test the predictive capacity of
MART on pixels located outside the training area. Under this
validation scheme, we also discuss the effect of sampling
intensity and the effect of integration of spatial context.

2. Method

2.1. Study area

The study area is located in France, on the western part of the
“Massif Central” (Fig. 1). It covers 90000 ha and represents 25
Table 1
Data used and derived geographical layers

Name Scale Resolution Nature of the soil variable derived N

Target variable
Soil map 1/250000 Reference area pe

Environnementals
dataset

Nature of soil-forming
factors derived

DEM 50 m Topography al
sl
cu
cu

Hydrology ct
dp

hp
Spectral reflectance ba

ba
Landsat ETM 30 and 60 m ba

Vegetation nd
Geological Map 1/250000 Lithology ge
Corine Land Cover 2000 1/100000 Land Cover cl

Scorpan factors: R: relief, O: Organisms, S: soil, P: parent material, Sc: soil classes
soil landscape units mapped at 1/250000 scale. These soil-
landscape units were derived from a synthesis of a pre-existing
soil map at 1/100000 scale (Bonfils, 1976). The density of soil
observations by auger borings was ca 1/50 ha. This region is
characterised by a high morphological and parental material
heterogeneity. Four subregions can be identified. The Brive
Basin is located north-west to south, mainly below 250 m of
elevation, covering 41% of the study area. In this subregion, the
parent materials are mainly on sandstone, marl and, more
locally sand and gravel from alluvial terraces. The calcareous
Causse plateau (7%) is a relatively flat area of 300 m mean
elevation, located in the south-western part of the reference
area. The large eastern part of the study area (the Limousin
plateau), ranging from 250 m to 630 m, is characterised by
gently undulating relief, and includes metamorphic (41%) and
eruptive (10%) soil-forming lithological contexts.

2.2. Digital data

Relief attributes were derived using a DEM at a resolution of
50 m from the French Geographical Institute (IGN, 2006).
Parent materials were derived from a 1/250000 lithological map
synthesised from all geological surveys available over the entire
region. Spectral reflectance in various wavelengths represents an
integrated response of soil-forming environment from bedrock
to vegetation (Dobos et al., 2000). Hence, one scene of Landsat
Enhanced Thematic Mapper (ETM) acquired on 9th November
2000 and covering the study area was downloaded (University
of Maryland, 2005). A land cover map derived from satellite
image interpretation and provided by the freely available Corine
Land Cover 2000 European database was also used (Commis-
sion of the European Community, 1993).We did not use climatic
data in this study because meteorological stations were rather
ame Description Scorpan name Type

do 25 classes representing soil-landscape
units of Brive-la-gaillarde region

Sc categorical

t Elevation (m) R quantitative
ope Local slope angle (%) R
rvv Profile curvature R
rvh Plan curvature R
i Compound Topographic Index R
pr Relative hydrological distance to

the nearest river (m)
R

pr Relative height to the nearest river (m) R
nd1-
nd7

All bands of the Landsat ETM scene
except the panchromatic band and band 6

O, S, P quantitative

nd6 Thermal Infra-red band of Landsat ETM C
vi Normalized Difference Vegetation Index O
ol Lithological units (15 classes) P categorical
c Third level Corine Land Cover description

(16 classes)
O Categorical

(McBratney et al., 2003).

http://dataservice.eea.europa.eu/dataservice
http://dataservice.eea.europa.eu/dataservice


Fig. 2. Validation procedures. In the full map setting (left) training and validation pixels that were sampled within whole map (internal validation). In the sub map
setting (right) the training area is restricted to dotted areas. The internal validation is applied on the training area, the external validation is applied on the grey area.

Table 2
Number of available training and validation pixels for both internal and external
validation procedures

Soil-
Landscape
Units

Full Map Sub Map

Training pixels Training pixels Validation pixels

UC1 6627 5506 83% 1121 17%
UC2 2629 1355 52% 1274 48%
UC3 788 552 70% 236 30%
UC5 5296 3056 58% 2240 42%
UC6 5281 2146 41% 3135 59%
UC7 3998 1583 40% 2415 60%
UC8 4157 1864 45% 2293 55%
UC9 7536 3010 40% 4526 60%
UC10 5361 5061 94% 300 6%
UC11 1321 455 34% 866 66%
UC12 1273 254 20% 1019 80%
UC13 1708 725 42% 983 58%
UC14 4260 1861 44% 2399 56%
UC15 6520 4813 74% 1707 26%
UC17 347 334 96% 13 4%
UC20 1662 799 48% 863 52%
UC21 2691 1527 57% 1164 43%
UC23 5744 2666 46% 3078 54%
UC24 2288 327 14% 1965 86%
UC26 2033 860 42% 1173 58%
UC28 1240 923 74% 317 26%
UC29 2576 2230 87% 346 13%
UC30 746 623 84% 123 16%
UC31 2894 2599 90% 295 10%
TOTAL 78,976 45,129 57% 33,851 43%
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few. Moreover, the main factor controlling climate in this region
is elevation, which was retained in the MART model.

2.3. Boosted classification tree

Initially developed by Breiman et al. (1984), the Classification
and Regression Tree algorithm (CART) was first adjusted to
predictive soil mapping from a reference area by Lagacherie
(1992). It allows the training dataset to be split recursively into
increasingly homogeneous subsets. Each split is defined as a set
of conditional rules based on the explanatory variables. The tree
created is usually very large with multiple terminal nodes,
meaning that the model is intimately fitted on the training
data (Lagacherie et al., 1995). This adverse effect is called over-
fitting. To avoid overfitting, trees can be pruned back by tuning a
splitting rule algorithm. One of the most interesting features of
CART is that it gives quantitative insight into the dataset by
stating explicit splitting rules. Besides, relatively important
variables can be pointed out by counting the times the variable
was used in nodes (Bui et al., 2006). However, inconsistencies
within the training dataset, such as noise or outliers, can greatly
affect the classifier's accuracy (Lagacherie and Holmes, 1997).

Recent statistical advances were implemented on decision
tree models, namely stochastic gradient boosting (Freidman,
1999). Boosting is an iterative process that looks at errors from
previous classifier steps to decide how to focus on the next
iteration over data (Freund and Schapire, 1996). The imple-
mentation of boosting in the tree model used here is an “off-the-
shelf” application called Multiple Additive Regression Tree
(MART) coupled with R statistical software (R Development
Core Team, 2005). The MART model iteratively builds small
trees (often six to eight nodes) from a randomly sampled
fraction of observations until satisfactory and stable error rate is
achieved. At each iteration, the tree is built to best fit the errors
associated with the linear combination of previous trees. In the
final classifier, each observation is classified according to the
most common classification among the trees (Lawrence et al.,
2004). Recent studies identified advantages of using boosted
trees compared with simple trees: improvement of accuracy
(Moran and Bui, 2002; Lawrence et al., 2004), little tuning
needed, and high robustness (Friedman and Meulman, 2003).

2.4. Data pre-processing

The data collected were used to derive environmental
variables taken as surrogates of soil-forming factors (Table 1).
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In this study, we considered easy to derive and interpret terrain
parameters often used in digital soil mapping applications
(Dobos et al., 2006). Pre-processing was carried out using
ArcGis/ArcInfo GIS platforms (ESRI, 2005). DEM-derived
variables include surfaces of first derivative (slope) and secondary
derivatives (profile and plan curvatures). These variables are
direct descriptors of the landforms representing morphological
attributes of the terrain. Secondary attributes were calculated so as
to characterise specific hydrological processes that were identi-
fied to be important soil-forming discriminators. The compound
topographic index (CTI), also referred to as wetness index, was
derived from the slope and upslope contributing area (Wilson and
Gallant, 2000). Further “raster-based” computation was carried
out to create surface representing the height of each pixel above
the closest waterway and the distance along the flow direction to
its closest river outlet. These two layers are thought to provide
information on the surface drainage. Each band of Landsat ETM
was taken as a separate input variable. Vegetation status and
biomass were also integrated through the normalised difference
vegetation index (NDVI), a well-used vegetation index based on
red (r) and near infrared (nir) bands (NDVI=(nir− r) / (nir+r)).
Lithology and land cover vector mapswere converted into “pixel-
based” maps. We chose a working pixel size of 100 m which is
considered to be a relevant and detailed enough geographical
support for a 1/250000 predictive mapping scale (Dobos et al.,
2006). Derived terrain parameters and remote sensing bands and
indices were resampled according to this spatial support, using the
nearest neighbour resampling method. Other resampling techni-
ques could have been suitable (e.g., bilinear sampling, cubic
convolution), but they were not tested as the focus of our study
was not to test resampling techniques, but to study sampling
intensity and validation procedure effects.

We considered that, within the training area, soil unit bound-
aries were subjected to positional errors due to the “expert-
based” delineation and its legibility constraints. A positional
error of 100 m at soil unit boundaries was applied to remove
uncertain pixels from the training process, using a buffer
operation. Following this process, the soil landscape map was
then converted into a raster map. The final database (Table 1)
was composed of 17 environmental variables and one target
variable representing 25 soil landscape units.

2.5. Accuracy assessment procedure

The basis of the validation techniques we used is to exclude a
fraction of the sample from the modelling process and to
compare the predicted value of these samples with their
reference value (Foody, 2002). This accuracy assessment is
summarised in the error matrix or contingency table. It was used
in this study to derived two classification accuracy indexes:
overall accuracy rate and the Kappa index. The former is a
simple ratio between the correctly allocated number of pixels
(confusion matrix diagonal) and the overall number of classified
pixels. The Kappa index is a robust index which takes into
account the probability that a pixel is classified by chance
(Girard and Girard, 1999). The Kappa index is, therefore,
always slightly lower than the overall accuracy measurement.
As mentioned by Muchoney and Strahler (2002) there are
two underlying issues when defining “statistically valid
independent estimate of accuracy”: spatial autocorrelation and
representativeness of sampling. These authors considered that
samples within the same site, in our case, taking validation
pixels from the same area than the training one, cannot be con-
sidered as being independent as those pixels are autocorrelated.
Therefore, such “pixel-based” ways of separating the training
and validation sample could lead to biased estimates of
accuracy. They suggested that sample independency can be
achieved when two samples are separated by a certain distance.

Thus, we applied two distinct validation procedures in order to
assess to what extent the classifier provided accurate prediction
within and outside the training area. These sampling procedures
are referred to as internal and external validation respectively. The
former uses training and validation pixels that were sampled
within the training area, whereas the latter uses geographically
distinct training and validation areas. These validation schemes
are illustrated in Fig. 2. The internal validation scheme was first
applied on the whole map (scheme referred as “full map setting in
Fig. 2, left), to test the effect of sampling intensity (see Section
2.6). Then, we separated training and validation areas (scheme
referred as “submap setting” in Fig. 2, right), to test both
validation schemes. To separate the training area from the
validation one, we manually divided the existing map so that all
lithological formations were present in both areas.

2.6. Sampling Intensity

Sampling design and size is of major importance in the ac-
curacy assessment process (Foody, 2002). One must set up the
location and the intensity of sampling to capture the whole
variability of the classes, in order to get a representative class
signature over the study area. However, practical constraints
often limit the realisation of this statistical requirement (Foody,
2002). As recommended by Moran and Bui (2002), we applied
a random weighted area sampling scheme. This procedure
samples a number of pixels within each class, proportional to
the extent of the soil landscape units. The underlying hypothesis
below this sampling scheme is that more individuals are needed
to characterise large units than smaller units. Besides, this
method makes sure that small units are not under-represented,
which may be the case with simple random or systematic
sampling.

We investigated whether an appropriate sampling intensity
existed, that is to say a trade-off between having too much
training data leading to a high-computational fitting exercise
and too little data with the risk that the model is unable to
characterise adequately soil landscape relationships. We tested a
range of sampling intensity from 10 to 90% of the class extent.
For each sampling intensity value, the modelling process was
performed thirty times in order to mitigate and assess the
random sampling effect. We did not study lower sampling
intensities as the main objective of this study was to test the
MART model for DSM using an already mapped training area.
Accuracy measurements were carried out on the full map and
the submap setting schemes (Fig. 2) according to the validation
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procedures presented previously (see Section 2.5). Overall
available numbers of samples are presented in Table 2.

2.7. Spatial context integration

Classification trees, as many classification algorithms, have no
mechanisms to integrate spatial relationships within the model
Fig. 3. Illustration of the integration of the spatial context by mean filtering. Slope fac
data filtered with a radius of 300 m, c) data filtered with a radius of 1200 m, d) dat
(Moran and Bui 2002). However, environmental attributes at
neighbouring locations can be of great interest in predicting soil
pattern (McBratney et al., 2003). Therefore, some authors
investigated the potential of incorporating local neighbourhood
information into the training pixels using convolution filtering
operations (Switzer, 1980; Schetselaar et al., 2000; Moran and
Bui 2002). Filtering is achieved by passing a floating window
tor (on left) and thermal infrared canal of Landsat ETM (right) for a) raw data, b)
a filtered with a radius of 2500 m.



Fig. 4. Overall estimates of accuracy obtained for the test on sampling intensity. Int: internal validation, ext: external validation.

Table 4
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over the variable to calculate a value of the processing cell (central
pixel) using the values of its neighbouring cells (Bonn and
Rochon, 1992). Filtering requires setting up two essentials pa-
rameters: the size and the type of the floating window. Moran and
Bui (2002) showed that adaptively filtered data combined with
raw data can improve the overall accuracy of the classification
from 49 to 70%. In this study, we explore the interest of using
mean convolution circular windows for filtering. The test is
carried out by increasing the floating windows radius. A visual
inspection of the filtering output conducted us to choose five
radius values: 300, 700, 1200, 2500 and 5000 metres. An illus-
tration of spatial filtering effect on variables is presented in Fig. 3.

2.8. prediction accuracy and soil scape variability

In order to assess the effect of soil scape variability on
classification rate, moving windows of 10×10 pixels were
applied on the validation area. By overlaying the windows and
the existing soil scape map, we calculated the number of “real”
soil scapes per window, and plotted it versus the number of well
classified validation pixels.

3. Results

3.1. Sampling intensity

In the full map setting, overall accuracy measurements
increase with increasing number of training pixels (Fig. 4a).
This is an expected result as the more data is used to fit the model,
Table 3
Classification accuracy measurements using raw input dataset or filtered dataset
using different radius sizes

Nature of
variables

Floating
window
radius
(meters)

Integration
area (ha)

Internal validation External validation

Overall
Accuracy
(%)

Kappa
index
(%)

Overall
Accuracy
(%)

Kappa
index
(%)

RAW 69 67 35 30
FILTERED 300 28 81 80 37 33

700 154 85 84 37 33
1200 452 87 86 40 36
2500 1963 88 87 38 34
5000 7854 88 87 37 33
the better the soil class variability is represented and the better the
prediction on juxtaposed test pixels. Overall accuracy ranges from
59% to 67%,whichmeans for this latter value that 2 test pixels out
of 3 have been allocated to the correct class. The largest increase
in predictive capability occurs between 10 and 20%of the training
data and evolves thereafter linearly with increasing proportion of
training data. We note a small difference of about 2% between the
overall accuracy and theKappa index. This observation points out
the low probability of allocating pixels to correct classes by
chance. The highest standard deviation measurement is observed
for 10% sampling intensity value. This is consistent in the sense
that when few pixels are sampled, the more the random sampling
effect is expressed. However, this standard deviation is fairly low
(0.7), showing that the predictive ability of the model is quite
stable even for low sampling intensities.

In the submap setting, both internal and external validations
procedures were carried out. In the internal mode, we note a
similar pattern as observed in the full map setting, even though
both overall accuracy and Kappa index are levelled up at 5.4%
on average (Fig. 4b). Using an external validation scheme
induces a marked decrease on overall accuracy and Kappa
index. Mean values of overall accuracy (34%) and Kappa index
(30%) suggest that the predictive ability of the models is quite
unsatisfactory as only one pixel out of three may be correctly
classified in the average. Higher discrepancies are observed
between overall accuracy and Kappa index suggesting that
chance factor has a larger influence. However, random sampling
Classification accuracy measurements using both raw input dataset and filtered
dataset using different radius sizes

Combination of
variables

Internal validation External validation

Overall
accuracy (%)

Kappa
index (%)

Overall
accuracy (%)

Kappa
index (%)

RAW+FILTERED
(r=300)

78 77 37 33

RAW+FILTERED
(r=700)

85 83 38 34

RAW+FILTERED
(r=1200)

87 86 42 38

RAW+FILTERED
(r=2500)

89 88 42 38

RAW+FILTERED
(r= 5000)

89 88 44 40



Fig. 5. Output class prediction and probability (external validation, sampling intensitity of training data of 30%, raw dataset + filtered data with a radius of 5000 m.
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effect still does not appear to affect classification results
significantly.

Sampling intensities higher than 30% did not increase the
prediction accuracy outside the training area. The important gap
between internal and external validation results raises concerns
about the ability of the classification tree model to predict
classes that are not spanned within the domain of the training
data. Further modellings were carried out using a 30% sampling
intensity value in the submap setting only.
3.2. Spatial context integration

We first analysed the effect of using the spatially filtered
input dataset compared to using the raw dataset (Table 3). For
the internal validation design, there was a clear improvement of
prediction accuracy. Although overall accuracy with the raw
dataset did not exceed 70%, using the filtered dataset yielded
values ranging from 81% fora small floating window size up to
88% for large windows. This is an illustration of spatial



Fig. 6. Boxplot of the rate of well classified pixels vs number of soilscape units
in a 10×10 pixel window.
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autocorrelation effect when training and validation datasets are
sampled from the same area. On the contrary, when using
external validation, only a slight improvement was observed by
filtering compared to using the raw dataset. The greatest
prediction accuracy (40%) was achieved for a filter radius of
1200 m. The best results were obtained when both raw and
filtered explanatory variables were combined (Table 4). This
result highlights the interest of mixing fine scale variables of
high local variability with the same variables transformed to
subregional trends.

3.3. Extrapolation

Output maps from the best model are presented in Fig. 5. We
observed large differences between noise distribution in the
predicted soil pattern for the training and validation areas. The
low noise rate on training areas, confirmed by the numerical
classification accuracy measurements, proved that the model
retrieved relevant and accurate soil landscape relationships. On
the other hand, the high level of noise at certain locations within
the validation area rendered soil patterns hardly distinguishable.
This suggests that noise density can be used as a spatial in-
dicator of prediction accuracy. The probability map, considered
as an expression of prediction uncertainty, gives coherent
information to this respect. Indeed, we found a strong relation
between pixels of high uncertainty their location with mixed
soil distribution (Fig. 6). In a soil survey approach, this could be
an important support in building an efficient soil sampling
scheme, concentrating soil sampling in uncertain prediction
locations.

4. Discussion

The results presented in this paper give insight into the way
the knowledge contained in existing soil maps can be used to
predict soil landscape patterns at unvisited areas for regional
soil mapping purposes.

4.1. Sampling intensity

Sampling intensity did not influence the classification
accuracy observed in the training area. As observed by Moran
and Bui (2002), rather low sampling rates were sufficient to
capture the entire class variability. This statement is from an
overall point of view as class homogeneity or purity does vary
from class to class. Very low sampling rates (b10%) were not
tested because our aim was not to simulate field sampling but to
test the use of a pre-existing soil map for training; however, we
suspect that accuracy would have decreased substantially.
Indeed, in an analogy with conventional soil survey, the lowest
tested value of 10% would represent a field sampling density of
1 sample per 10 ha, which is far more intense than classical soil
sampling recommendations in a 1/250000 scale mapping
context (Finke et al., 2001).

4.2. Spatial context integration

Spatial context integration by the use of a mean filtering
algorithm on explanatory variables increased the Kappa index
on the extrapolated area by more than ten points. The best
accuracy measurements were obtained for a combination of raw
explanatory dataset with the same dataset filtered with a circle
integration window of 5 km radius. The overall accuracy
increased as the window radius increased. This surprising result
could reflect the effect of a global regional trend (i.e. elevation)
on soil spatial distribution. The spatial prediction on training
areas displayed a substantial decrease of noise compared with
using raw variables only. Our approach remains rather simple in
the sense that a fixed radius window was used on terrain-derived
variables and remote sensing bands with no assumptions
regarding local variability of each explanatory variable,
compared to the approach of Moran and Bui (2002), who
used variograms to adjust the size of the filter. However, our
results address the issue raised by McKenzie and Ryan (1999)
about the mismatch of scales between the target variable and the
explanatory variables. The authors mentioned that the appro-
priate level of details of variables should depend on the
processes controlling soil formation which are strongly land-
scape dependent. When dealing with existing soil maps, the
level of detail described by the derived variables may not be the
one that was integrated in the mental model of the surveyor that
delineated soil units. Thus, we found that spatial filtering was an
efficient means for integrating various scales of explanatory
variables.

4.3. Validation procedures and DSM perspectives

The validation procedures that were used for both sampling
intensity and spatial context integration tests revealed the
importance of the location of the test pixels when evaluating the
predictive ability of the model. Indeed, we observed a gap of
40% of overall accuracy between internal and external
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validation schemes. This obviously faces the issue of test pixels
independence. The underlying question is to determine whether
spatial autocorrelation between training and test pixels occurs
which, in consequence, may overestimate the classification
accuracy. The internal accuracy is likely to be prone to
overestimation as training and test samples are located close
to each other. Then, spatial filtering increases spatial auto-
correlation and thus increases classification accuracy. On the
other hand, external accuracy may be underestimated as test
pixel takes into account only a subpopulation of the soil class.

These accuracy errors due to spatial autocorrelation were
also discussed by Friedl et al. (2000) and Muchoney and
Strahler (2002) for land cover classification. Internal and
external classification can be referred to respectively as pixel
and site-based calibration/validation used by these authors and
more generally by the remote sensing community. The low
external classification accuracies we obtained are consistent
with values reported by these authors, i.e. around 50% for the
overall accuracy.

We observed in this paper that “true” accuracy can only be
approximated correctly if test samples are collected at a certain
distance from the training samples.

Recent papers (Dobos et al., 2000; Moran and Bui, 2002;
Scull et al., 2005) outlined the trend of predictive soil models to
shift from research to operational phase. This trend leads to
more and more enlarged study areas and consequently to an
increasing number of soil units involved in the modelling
process. Therefore, fitting models is more and more challenging
due to a larger number of soil classes, and larger predicted areas
are usually linked to a decrease of thematic and spatial accuracy.
Nevertheless, this trend meets the regional and national needs
such as the 1/250 000 French and European soil mapping
programmes (Finke et al., 2001).

5. Conclusion

This study provides new insight into the way knowledge
from soil maps could be retrieved to perform extrapolation. We
applied a methodology based on the boosted classification tree
model that follows three main steps: pre-processing, modelling,
and extrapolation. We focused our study on the accuracy
assessment and testing of two modelling parameters: sampling
intensity and spatial context integration. First, we observed
strong differences in accuracy between the training area and the
extrapolated area. Second, sampling intensity, in proportion to
the class extent, did not largely influence the classification
accuracy. Spatial context integration by the use of a mean
filtering algorithm on explanatory variables increased the
Kappa index on the extrapolated area by more than ten points.
The best accuracy measurements were obtained for a combina-
tion of the raw explanatory dataset with the filtered dataset
representing regional trend. However, the predictive capacity of
models remained quite low when extrapolated to an indepen-
dent validation area. Nevertheless, this study offers encourage-
ment for the success of extrapolating soil patterns from existing
soil maps to fill the gaps in present soil map coverage and to
increase efficiency of ongoing soil survey.
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