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Abstract

Land degradation and regeneration are complex processes that greatly impact climate

regulation, ecosystem service provision, and population well-being and require an

urgent and appropriate response through land use planning and interventions. Spa-

tially explicit land change models can greatly help decision makers, but traditional

regression approaches fail to capture the nonlinearity and complex interactions of

the underlying drivers. Our objective was to use a machine learning algorithm com-

bined with high-resolution data sets to provide simultaneous and spatial forecasts of

deforestation, land degradation, and regeneration for the next two decades. A

17,000-km2 region in the south of Madagascar was taken as the study area. First, an

empirical analysis of drivers of change was conducted, and then, an ensemble model

was calibrated to predict and map potential changes based on 12 potential explana-

tory variables. These potential change maps were used to draw three scenarios of

land change while considering past trends in intensity of change and expert knowl-

edge. Historical observations displayed clear patterns of land degradation and rela-

tively low regeneration. Amongst the 12 potential explanatory variables, distance to

forest edge and elevation were the most important for the three land transitions

studied. Random forest showed slightly better prediction ability compared with maxi-

mum entropy and generalized linear model. Business-as-usual scenarios highlighted

the large areas under deforestation and degradation threat, and an alternative sce-

nario enabled the location of suitable areas for regeneration. The approach devel-

oped herein and the spatial outputs provided can help stakeholders target their

interventions or develop large-scale sustainable land management strategies.
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1 | INTRODUCTION

1.1 | International context: Targeting the drivers of
change

The agriculture, forestry, and other land use sector, which is respon-

sible for a quarter of global anthropogenic greenhouse gas

emissions (Intergovernmental Panel on Climate Change, 2014), is

under pressure to find pathways to mitigate climate change and

improve population livelihood through sustainable land manage-

ment. Mitigation initiatives under the scope of the environmental

United Nations conventions, such as Reduction of Emissions due to

Deforestation and Forest Degradation and enhancement of forest

carbon stocks (REDD+) under the United Nations Framework on
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Climate Change or Land Degradation Neutrality under the United

Nations Convention to Combat Desertification, require the identifi-

cation of drivers of land use change to (a) quantify the impact on

ecosystem goods and services and (b) design appropriate strategies

for conservation and sustainable development. However, a growing

number of scientific assessments of the drivers of deforestation are

reaching diverging conclusions (Ferretti-Gallon & Bush, 2014) and

may explain why current REDD+ policies are struggling to demon-

strate their effectiveness as a benefit-sharing solution (Weatherley-

Singh & Gupta, 2015).

1.2 | Drivers of change analysis: No common
framework

Assessing the driving forces behind land use change is the key for

understanding changes in our global environment (Bax et al., 2016)

and for building realistic models of land use change (Veldkamp &

Lambin, 2001). However, they are difficult to quantify and assess

because they have long underlying causal chains—also referred to

as biophysical feedback (Verburg, 2006) or socioeconomical

retroactions—and take different shapes depending on the perspective

that is chosen (Wehkamp et al., 2015). For instance, the perspective

described by Geist and Lambin (2001) is often used to distinguish

direct drivers (or proximal) and indirect (or underlying causes) drivers.

The former is defined as human activities or actions at the local level

that directly lead to the conversion of land into another land use such

as forest clearing due to agricultural expansion or mining. The latter

implies complex social processes at various scales, which ‘underpin or

sustain the direct drivers,’ such as the demographic expansion or the

price of commodities. They are then analysed either from a process-

driven or data-driven modelling framework. Nonetheless, all the

models fail to capture all the complexity (Veldkamp & Lambin, 2001).

Currently, no accepted framework exists to assess the driving forces

of land change process because the availability of the input data set

(quantity and quality) and assumptions used (correlation or causality)

greatly influence the results.

1.3 | Land change modelling: Limitations and the
way forward

Spatially explicit land use change models show a great advantage for

the prediction of potential land change locations in a transparent and

verifiable manner. The three most important and common criteria of

land change models for policymakers are (a) compliance with Intergov-

ernmental Panel on Climate Change good practice guidelines,

(b) clarity, and (c) dynamic baseline updating (Huettner et al., 2009).

However, land change models heavily rely on two key parameters: the

input data set and model assumptions. The former usually refers to

land use maps, used as the main input data, and the accuracy of these

maps is affected by biases in operator and satellite image classification

techniques. The latter refers to the digital relationship between land

change observations and explanatory variables, either linear or

nonlinear. Veldkamp and Lambin (2001) argue that linear models are

prone to numerical instability as “small measurement errors in input

data can propagate and lead to spurious results, given the intrinsic

nonlinear behaviour of the modelled system.” In contrast, nonlinear

algorithms, such as machine learning algorithms (neural network, sup-

port vector machines, decision tress, etc.), can capture nonlinear

observation–variable relationships, but these have not been tested

yet for land degradation and regeneration spatial modelling to our

knowledge.

Two decades of high-resolution remote-sensing images allow the

detection of land use change in an unprecedent manner. Notably,

Hansen et al. (2013) published a globally consistent and locally rele-

vant data set of vegetation cover gain and loss over a long historical

period, from 2000 to 2018. This data set provides a means for

assessing key ecosystem dynamics such as deforestation, land degra-

dation, and regeneration while assuming that tree cover is a proxy for

numerous ecosystem services. In this study, we explore the applica-

tion of machine learning algorithms with an easy-to-access and glob-

ally available vegetation change data set. The overall objective of this

research is to test a new, low bias, and adaptive land change modelling

framework.

1.4 | Madagascar: A need for spatially explicit,
sound, and comprehensive information

Madagascar is recognized as a major biodiversity reservoir in the

world, and this reservoir is mainly located within Madagascar's

intact or natural forest. Recent studies have highlighted a dramatic

increase in deforestation in this country. On a national scale, a study

revealed a shift from 0.5% of deforestation (21,710 ha yr−1) for the

2005–2010 period to 0.92% by year (34,567 ha yr−1) for the period

2010–2013 within the tropical humid ecoregion (Rakotomala et al.,

2015), with dramatic values in the dry and spiny forest area

(ONE et al., 2015). Today, the total remaining intact forest is less

than 8,485,509 ha (ONE et al., 2015) relative to the 10,605,700 ha

remaining in 1990 (Harper et al., 2007), which corresponds to a loss

of 20% in 25 years. Madagascar has participated in both the REDD+

and land degradation neutrality schemes since 2008, and with the

help of the Forest Carbon Partnership Facility (Readiness Plan Idea

Note, 2008), Madagascar has recently validated its REDD+ Readi-

ness Preparation Proposal as described in the national REDD+ strat-

egy (Readiness Preparation Proposal, 2014) and has proposed an

emission reduction programme in a rainforest pilot region (Emission

Reductions Program Idea Note, 2015). In these documents for

national and subnational scale REDD+, broad information is pro-

vided on the factors of deforestation and the driving forces that

underlie these changes, but quantifiable and spatially explicit data

are still missing. Land use change spatial assessment in REDD+

countries such as Madagascar is urgently required (a) to precisely

estimate the impact of those deforestation programmes that have

been avoided and the effectiveness of conservation efforts and
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(b) to build comprehensive possible future scenarios with sound

economic and environmental assessment.

1.5 | Objectives

The main aim of this paper was to develop, test, and validate a new

tool with high-resolution, spatially explicit, potential change maps of

deforestation, degradation, and regeneration. Then, we proposed land

change scenarios at a regional scale. The approach was tested in

southeastern Madagascar, which displays a high level of biodiversity

and a high rate of deforestation.

We first compiled a historical change data set from the global

forest change data set, which recorded gain and loss at 30-m pixel

for the 2000–2014 period (Hansen et al., 2013). Presenting a

benchmark of the intact forest cover in 2000 (Grinand et al., 2013),

this raw data set was used to derive a data set for three land change

transitions: deforestation, land degradation, and land regeneration.

In addition, we collected and prepared 12 potential land change

explanatory variables that were constructed and statistically

assessed for their contributions to the three land change processes.

Validation of the model was performed using several commonly

used land change accuracy metrics. Three land change scenarios

were established and used to assess the potential impacts and

opportunities in natural protected areas and areas with currently no

protected status.

2 | MATERIAL AND METHODS

2.1 | Study area

The study area is located in the southern part of the tropical humid

forest corridor of Madagascar (Figure 1), approximately 70 km wide

along its east–west axis and 200 km long along its north–south axis

(1,676,000 ha). The region is marked by a large east–west gradient of

precipitation, from 2000 to 700 mm (WorldClim database,

Hijmans et al., 2005). Four principal landscapes can be distinguished:

the flat sandy coastline, the humid rough montane terrain, the down-

hill mosaic crop-savannah system, and the semi-arid gently sloping

western corridor area. Two national parks are located in the study

area. One to the south, the Andohahela National Park (82,000 ha),

was created first as a national reserve in 1934, and one to the North,

the Midongy du Sud National Park, was created more recently (1997)

and covers 188,000 ha. In total, these two parks cover 16% of the

study area and 46.8% (191,970 ha) of its forested area. Biodiversity is

mainly located in the forested areas (Vieilledent et al., 2018). The soils

are dominated with ferralitic soils developed from igneous rock, more

or less truncated by erosion processes, leading to local deposits of soil

particles in the valleys (Grinand et al., 2017). The agricultural system is

dominated by irrigated rice cropping systems and shifting agriculture

of food crops such as rice associated with cassava and maize in more

or less long crop-fallow rotations. Other activities include cattle

ranching and cash crop production, mainly coffee. The population is

rural, with only 11 towns with more than 10,000 inhabitants and that

hold more than one food market a week and with around 1,417 vil-

lages (Figure 1).

2.2 | Land use change data set

In this study, we combined two existing data sets. The vegetation change

data set produced by Hansen et al. (2013) for the 2000–2014 period

available globally and the intact forest map in 2000 produced by Grinand

et al. (2013) in Madagascar. First, we collected the vegetation loss and

gain information (Hansen et al., 2013) that was derived from vegetation

reflectance change analysis. Vegetation index are correlated to biomass

productivity and commonly used as an indicator of land health status to

assess land degradation as a whole (Bai et al., 2013; United Nations Envi-

ronment Programme, 2012; Yengoh et al., 2015). In Hansen et al. (2013),

vegetation loss was defined as “a stand-replacement disturbance or com-

plete removal or a change from a forest to nonforest state” for the

2000–2014 period, omitting selective removal of trees that do not lead

to a nonforested state (forest degradation). Vegetation gain was defined

as “the inverse of loss, or a nonforest to forest change entirely within the

2000–2012 period”, omitting areas that might have been considered as

forest cover in 2000 (land regeneration that started before 2000). Sec-

ond, we applied a mask of natural forest extent from another study that

used intensive photointerpretation and the national forest definition

(Grinand et al., 2013) in order to separate pixels representing vegetation

loss or gain within and outside intact forest at the initial date (2000).

F IGURE 1 Location of the study area in the southeast tropical
humid corridor. Sources: Système des Aires Protégées de Madagascar,
2010; BD200 Foiben-Taosarintanin'i Madagasikara; Rakotomalala
et al, 2015. NP, National Park [Colour figure can be viewed at
wileyonlinelibrary.com]
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Finally, we defined three different land change processes and calculated

the corresponding data set: ‘deforestation’ as vegetation loss inside intact

forest, ‘land degradation’ as vegetation loss outside intact forest and with

no vegetation gain observed at the same location, and ‘land regeneration’

as vegetation gain outside intact forest without any vegetation loss.

Areas with loss and gain observed at the same location, which are likely

to represent agricultural land that has been cleared and left fallow, were

not included in this study.

2.3 | Potential land change explanatory variables

Twelve potential explanatory variables of land use change were

converted into spatially explicit layers and included in our analysis

(Table 1). They represent three types of variables usually used in spa-

tially explicit land change studies (Aguilar-Amuchastegui et al., 2014;

Bax et al., 2016; Ferretti-Gallon & Bush, 2014) and already tested in

Madagascar (Thomas, 2007, Vieilledent et al., 2013). The first type

represents variables related to the amount of time required to access

the land and transport goods to market: elevation, slope, proximity to

towns or villages, proximity to main roads or secondary roads, and

proximity to the forest edge. The second type represents potential

productivity factors of land under agriculture: orientation of the slope

(aspect), proximity to water course, and the number of dry months,

which is defined as the number of months with potential

evapotranspiration higher than monthly rainfall (http://madaclim.

cirad.fr). The last predictor type expresses land tenure and land regula-

tion: the two national park delimitations collected from the Protected

Areas system of Madagascar (“Système des Aires Protégées de Mada-

gascar”) and the population density aggregated at the county level

(‘communes’), which was taken from a 2006 to 2009 census collected

by “Institut National de la Statistique à Madagascar”.

2.4 | Importance of drivers

Prior to modelling, spatial drivers of deforestation, land degradation,

and regeneration processes were assessed using extractions of spatial

predictor values for each land change process. We used a stratified

random sampling scheme by randomly sampling 10,000 observations

areas without changes and 10,000 observations in the land change

category. Three data sets of 20,000 observations representing the

three processes were thus compiled. Observed probabilities (ratio of

change observation divided by the total observations) were computed

for quantiles on the predictor range values. This approach allows a

quick overview of the influence of each factor, with values above 0.5

having a positive effect on change, with values below 0.5 having a

negative effect, and a straight line at the 0.5 value indicating no influ-

ence. This empirical analysis was complemented with a linear regres-

sion model to assess the direction (positive or negative) and

correlation significance of each predictor using the same matrices.

2.5 | Model building

Leading spatially explicit land use change modelling software such as

LAND CHANGE MODEL (Eastman, 2012), GEOMOD (Pontius, Jr.,

Cornell, & Hall., 2001), or DINAMICA EGO (Soares-Filho et al., 2009)

uses statistical models or modelling chains that usually require fine

tuning with numerous key parameters, which may greatly impact the

results. This study considers the random forest algorithm (RF;

Breiman, 2001), which is increasingly being used in many spatial

applications that deal with nonlinear and complex nature–human

interactions, appreciated for its good predictive ability and low

parameterization requirements. Examples include global and high-

resolution biomass mapping (e.g., Baccini et al., 2012; Vieilledent

et al., 2016), land use and land cover (Gislason et al., 2006), and soil

organic carbon change mapping (e.g., Grinand et al., 2017). Recently,

this tool has been tested in land use change modelling applications

(Gounaridis et al., 2019). RF combines the advantage of using bag-

ging (random selection of individual and variable) and a simple deci-

sion tree (recursive binary split in the explanatory variable data set)

that can be used to solve both regression and classification

problems.

RF was then tested and compared with the generalized linear

model, which is a commonly used regression algorithm for land use

change modelling and maximum entropy; the latter of which is a

famous ‘two-class’ species distribution model that has recently been

TABLE 1 The 12 explanatory variables derived

Name Source

Range

(min–max) Unit

Elevation SRTM 1–1946 Metre

Slope SRTM 0–69 Degree

Aspect SRTM, 0–360 Degree

Proximity to forest

edge

This

study

30–12,041 Metre

Number of dry month MadaClim 0–12 Month

Proximity to rivers SRTM 0–9,1 km

Protected areas SAPM 0,1,2 Category

Population density INSTAT 8–1,623 People/

km2

Proximity to main

roads

FTM 0–65 km

Proximity to main

towns

FTM 2,3–65 km

Proximity to villages FTM 60–18,541 Metre

Proximity to tracks FTM 30–13,441 Metre

Note: SRTM (https://www2.jpl.nasa.gov/srtm); MadaClim, (http://

madaclim.cirad.fr); SAPM, version 2010; Protected Area Network System,

version 2010; INSTAT, census survey from 2006 to 2009; FTM from

National Institute of Geography.

Abbreviations: FTM, Foiben-Taosarintanin'i Madagasikara; INSTAT,

Institut National de la Statistique à Madagascar; MadaClim, Climate Data

on Madagascar; SAPM, Système des Aires Protégées de Madagascar;

SRTM, Shuttle Radar Topography Mission.
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applied with success in a deforestation modelling study (Aguilar-

Amuchastegui, Riveros, & Forrest, 2014). RF was used in the classifi-

cation mode using a two-class (change and no change) mode, and

class membership was further processed. The three algorithms were

calibrated using the same point data set presented above (20,000

observations). The calibrated model was applied to the spatial predic-

tor layer stack to predict the probability of the land change category

over the study area at a 30-m resolution. We referred to the three

transition probability maps as the deforestation risk map, land degra-

dation risk map, and land regeneration suitability map.

2.6 | Model assessment

Model accuracy assessment is a key step in land use change

modelling because it involves providing sound information to

stakeholders about potential future land use dynamics. In this

study, we randomly sampled 20,000 points within the initial land

cover, that is, the extent of forest in 2000 for an accurate assess-

ment of deforestation and the extent of the nonforested area in

2000 for an accurate assessment of land degradation and regener-

ation. For these point locations, we predicted the land transition

probabilities by using the above-mentioned calibrated models. We

predicted the 2014 land allocation by using the historical

2000–2014 amount of change (Table 2) and assigning the highest

probability values to ‘change’ value (value of 1) and assigning the

remaining pixels to ‘no change’ (value of 0). We then calculated

commonly used accuracy metrics: the area under the curve (AUC)

‘receiver operating characteristic’ (referred to as AUC in this fol-

lowing text), the figure of merit (FOM), and user's accuracy

indexes. The AUC is the most commonly used metric for species

distribution models (Elith et al., 2006). This statistic was computed

using the pROC package available in R (Robin et al., 2011). It allows

the predictive power of the land change model to be assessed,

with a value of 1 indicating perfect predictive power, 0.5 meaning

that the model is no better than random, and values below 0.5

indicating systematically incorrect predictions (Pontius et al.,

2001). We also computed the FOM because it is a required indica-

tor in the REDD+ methodologies (Shoch et al., 2013), although this

indicator is correlated with the net area of change (Pontius et al.,

2008), which underpins study-to-study comparisons. REDD+

methodologies usually require an FOM value greater or equal to

the net change ratio. The formulas used to derive each accuracy

metrics are summarized in Table 2.

2.7 | Predicting future land use transitions areas

Land use change modelling outcomes are twofold: future rate

(or quantity) of change and potential location of changes to come.

These two overarching goals imply different data requirements and

validation strategies (Veldkamp and Lambin, 2001). Several authors

have suggested the need to clearly separate these processes to obtain

a comprehensive validation framework (Geist & Lambin, 2001, Pontius

et al., 2001). This study focuses on the spatial distribution of changes

combined with simple expert decisions on the quantity of change.

The land change probability maps were used to derive the land

change allocation maps by assigning the highest probability pixels to the

change value until the expected quantity of change is reached. The

remaining pixels were assigned as having no change value. Based on the

observed land change, we developed three usual and easy-to-test sce-

narios: two business-as-usual (BAU) and one alternative scenario. The

first two are considering either a historical average rate of change or the

past trend, ‘BAU average’ and ‘BAU trend,’ respectively. These scenarios

reflect two commonly used baseline scenarios, with and without

accounting for historical trend, with the former being seen as the worst

case scenario (i.e., steady increase for the next 20 years), whereas the

latter is more conservative. The third scenario named hereafter “alterna-

tive scenario” represents policy targets that were discussed during

meetings with local stakeholders (protected area managers and local

authorities). This scenario reflects national policy of deforestation reduc-

tion (REDD+ commitments presented in the introduction) and landscape

restoration. Regarding the “alternative scenario,” an ambitious restora-

tion plan was launched in March 2019 by the government, with a target

to restore 40,000 ha of land each year. In this study, the alternative sce-

nario depicts an optimistic view considering a 50% decrease of both

deforestation and land degradation and considering an important effort

of 10,000 ha converted to sustainable land management over the next

20 years (500 ha by year). The term sustainable land management here

includes activities in the field that increase the vegetation response over

years compared with the initial situation. Thus, sustainable land manage-

ment covers a range of human activities or practices that span aban-

doned agricultural land, long crop-fallow rotation, tree plantation, and

agroforestry.

Predicted land change allocation maps were constructed indepen-

dently for each transition and finally combined into one unique land

use change map. We assumed that, in nonforested areas where land

regeneration and land degradation process were predicted in the

same location, priority was being given to land regeneration.

All data processing steps (Figure 2) were carried out via free and

open source software: GRASS GIS (GRASS Development Team 2015),

QGIS (QGIS Development Team 2009), and R (R Core Team 2015).

TABLE 2 Illustration of the change matrix used for validation and
to derive the accuracy indexes

Reference

No change (0) Change (1)

Predicted No change (0) A D

Change (1) C B

Note: Overall accuracy: OA = (A + B)/(A + B + C + D). User accuracy of

change: UAc = B/(B + C). User Accuracy of no change: UANC = A/(A + D).

Balanced User Accuracy: UA = (UAC + UANC)/2. Figure of Merit:

FOM = B/(B + C + D), where A indicates the correctly predicted (true

negative); B is the correctly predicted presence of land change (true

positive); C is the no change pixel predicted as change (false positive); and

D is the change observations predicted as no change (false negative).
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3 | RESULTS

3.1 | Observed historical land use changes

During the 2000 to 2014 period, 24,834 ha (5.76%) of forest were

lost; 38,320 ha (3.41% of the nonforested initial state) of land were

degraded; and 4,221 ha (0.38% of the nonforested initial state) of land

underwent regeneration (Table 3). We observed an acceleration of

forest loss and land degradation at a pace of +195 ha yr−1 and

+113 ha yr−1, respectively, in the last 14 years (Figure 3). Land degra-

dation outside the intact forest was found to be quite important

(2,737 ha yr−1), and we observed only a few regeneration areas

(302 ha yr−1).

3.2 | Drivers of the location of deforestation,
degradation, and regeneration

The importance of factors was analysed using empirical (Figure 4)

and regression methods (Table 4) to visualize and quantify the corre-

lation between observed change and the selected explanatory vari-

ables. We first observed a major influence of elevation and distance

to the forest edge for the three land change processes under study.

Areas below 700 m of elevation display a high risk of deforestation

and land degradation. We observed two elevation suitability peaks

at 110 and 570 m for land regeneration. Areas above 700 m are

much less threatened by degradation or are much more suitable for

regeneration. The proximity to the forest edge effect displayed a

clear decreasing trend, with a high risk of deforestation within

200 m inside the forest, a high risk of land degradation within the

500-m buffer around the forest, and up to 800 m for land

regeneration.

F IGURE 2 Work flow
diagram of the different steps
carried out in this study [Colour
figure can be viewed at
wileyonlinelibrary.com]

TABLE 3 Historical land change summary statistics for
2000–2014 period

Land change
category

Area of

change
2000–2014
(ha)

Percentage of
initial state of
forest or land (%)

Annual

rate of
change
(ha yr−1)

Deforestation 24,834 5.76 1,774

Land

degradation

38,320 3.41 2,737

Land

regeneration

4,221 0.38 302

Note: These statistics were extracted using a combination of data sets

from Hansen et al. (2013) and Grinand et al. (2013).
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Slope has no effect on deforestation, in contrast to degradation

and regeneration, which are more likely to occur in steep areas (>8�).

Slope orientation (aspect) had the same influence for the three pro-

cess, with higher suitability for sun-facing slope (north), and con-

versely. The number of dry months seems moderately important, with

less suitability values on all transitions over areas with more than

4 dry months. This finding applies to the western part of the study

area and approximately one third of the study area. Distance to the

rivers does not seem to influence any land change transitions.

Proximity to main roads and towns shows a broad decreasing

trend for deforestation risk but with sometimes irregular patterns.

Proximity to villages and tracks is, however, clearly affecting the prob-

ability of deforestation, with high values up to 4 km. Regarding land

degradation and regeneration, both transitions are affected by the

main roads and towns, in a large spatial fringe, from 7 to 30 km. Prox-

imity to villages and tracks has no importance for regeneration; how-

ever, we observed a slight increase of land degradation in areas at

more than 2 km away. According to the regression analysis (Table 4),

population density is significant despite a low z value. The relationship

between the three processes and population density is low (Table 4),

with no clear pattern (Figure 4). Finally, the two national parks

showed contrasted responses regarding land transition (Figure 5). This

will be further addressed in a subsequent section (Section 3.5).

3.3 | Land use change model accuracies

The three models were applied on an independent sampling validation

data set in order to calculate accuracy measurements (Table 5). The

three models showed overall accuracy above 75% for the three land

use changes modelled. The RF model performed systematically better

compared with the two others regarding the AUC and FOM metrics.

AUC was above 0.87 for the three transitions, indicating that the

three models are much better than a random model. FOM was 0.19

for deforestation, 0.11 for land degradation model, and 0.02 for land

regeneration model using RF. Maximum entropy and generalized lin-

ear model were slightly better compared with RF regarding the user

accuracy of change (UAc) and the balanced user accuracy (UA).

3.4 | Land use change scenarios on the
horizon 2034

Land use change maps under BAU scenarios (Table 6) revealed three

land change hot spots. The average and trend BAU scenarios did not

show great differences. First, the forested land that displays the

highest risk of deforestation is located between the two national

parks. A second change area displays land degradation around the

southeast forested area and the remaining northern forested patches.

Finally, the land regeneration area is essentially located in the north-

ern area, close to the town of Midongy and adjoining the national Park

(Figure 6). The alternative scenario displays reduced patches of defor-

estation and degradation and further highlights the northern area as

being the best suited location for sustainable land management.

3.5 | Conservation threats and restoration
opportunities

As we saw in Section 3.2, the two parks display a contrasted pattern

regarding historical land use change. We further analysed these differ-

ences by extracting the estimated area of change for the three scenarios

(Figure 7). We observed that the Andohahela National Park is weakly

affected by land changes, with less than 3,000 ha of cumulative land use

change estimated for the next two decades regardless of the scenario.

On the other hand, land use change in the Midongy National Park can

represent up to 18% of its overall area for both the BAU ‘trend’ scenario

(more than 34,321 ha of change for the next two decades). The alterna-

tive scenario in this park shows high potential for reduced deforestation,

degradation, and a clear pattern of potential regeneration (8,253 ha com-

pared with 2,180 ha under the BAU ‘average’ scenario).

The remaining unprotected area shows the great extent of both

deforestation and land degradation. Deforestation may affect more

than 59,613 ha of forested areas in 20 years under the two BAU sce-

narios. The alternative scenario offers a relatively high amount of

potential land regeneration (8,485 ha), but this regeneration repre-

sents only a small share (0.6%) of the total unprotected area and is

located mainly in the northern part of the study area (Figure 8).

F IGURE 3 Annual deforestation and land degradation in hectares for the historical period. Values were extracted from forest loss year data
product (Hansen et al., 2013) and intact forest extent (Grinand et al., 2013); deforestation is the forest loss within intact forest, and land
degradation the tree loss outside intact forest. The data were smoothed with a moving window of 3 years

GRINAND ET AL. 7



4 | DISCUSSION

4.1 | On the drivers of the location of land use
change

Elevation and proximity to the forest edge were the two first drivers

explaining land use transitions. Those two biophysical and proximity

local drivers were also reported to largely influence deforestation in

many countries (Green et al., 2013; Armenteras et al., 2019; Bax et al.,

2016; Aguilar-Amuchastegui, Riveros, & Forrest, 2014). Elevation in

Madagascar is a physical barrier to human presence; the highlands

above 800 m are not suitable for human settlement because of their

steep slopes, dense forest, and distance from the current villages. As

expected, the proximity to forest edge is positively correlated to

deforestation because it is easier to clear-cut the forest at the edge

than inside the forest. Land degradation also occurs at the forest edge

F IGURE 4 Probability distribution of deforestation (red line), land degradation (orange line), and regeneration (green line) observations. The
dashed line represents the 50% probability; values above indicates high probability of land change; values below indicates low probability of land
change. * indicates land tenure factor. 0 = no protected areas 1 = National park of Andohahela, 2 = National Park of Midongy [Colour figure can
be viewed at wileyonlinelibrary.com]
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area and is related to shifting cultivation practices combined with the

intense rainfall that triggers soil erosion (Grinand et al., 2017). Proxim-

ity to forest edge is also a factor facilitating forest regeneration. Trees

of the native forest can regenerate at a higher rate and with more

diversity thanks to the presence of seed trees or frugivore seed dis-

persers that do not move far from the forest edge (Cubiña & Aide,

2001; McConkey et al., 2012; Wijdeven & Kuzee, 2000). Notably,

most of the Malagasy tree species are adapted to dispersion by frugiv-

orous vertebrates (Razafindratsima, 2014). The presence of small

patches of forest near the intact forest edge (weakly fragmentated

forest) can also contribute to the displacement of seeds dispersers on

previously deforested areas (McConkey et al., 2012;

Razafindratsima, 2014).

The other factors are less statistically influential but still provide

important knowledge on the underlying processes. The slope had no

influence on deforestation but did influence land degradation and

regeneration, especially for areas of high slope. This indicates that the

steep areas are subjected to deforestation (slash and burn practices or

TABLE 4 Results of linear logistic regression

Deforestation Land degradation Land regeneration

Factors z value Significance z value Significance z value Significance

Intercept 25.484 *** 13.931 *** 17.390 ***

Elevation −24.960 *** −23.625 *** −24.199 ***

Slope −1.930 * 11.450 *** 13.624 ***

Aspect −8.099 *** −6.161 *** 7.031 ***

Proximity forest edge −36.923 *** −33.613 *** −38.835 ***

Number of dry months −5.782 *** −5.190 *** −23.562 ***

Proximity rivers −0.866 3.933 *** 4.839 ***

Parks—Andohahela −0.229 −3.479 *** −3.475 ***

Parks—Midongy −12.394 *** 18.210 *** 16.967 ***

Population Density −3.647 *** −4.018 *** −3.650 ***

Proximity main roads 3.577 *** 8.932 *** 21.505 ***

Proximity main towns 5.161 *** −9.044 *** −14.830 ***

Proximity villages −12.675 *** 3.592 *** −4.696 ***

Proximity tracks 11.944 *** 6.136 *** 4.171 ***

Note: Bold values indicate factors with z value above 10.

***0.001.
**0.01.
*0.05.

F IGURE 5 Illustration of the three land transitions maps [Colour figure can be viewed at wileyonlinelibrary.com]
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uncontrolled fire) but are also more likely to be rapidly abandoned.

Abandonment could result in two contrasting phenomena in those

areas, either severe and accelerated land degradation (bare soils are

rapidly eroded) or soil regeneration when soils still have regenerative

capacity (organic soil layer not yet eroded, well structured, and with

a proximate seed ‘bank'). The influence of the orientation of slope

indicates that plots suitable for shifting cultivation or regeneration

have a longer sun exposure, as expected. The results obtained for

proximity to roads, towns, or villages suggest that the main roads

and towns have different levels of attractiveness according to the

city involved. To better account for these socioeconomic factors,

one should go deeper into the type of the location or roads (not only

two types), for instance, according to the number of food markets,

density, or quality of the road. The influence of population density

also displays an odd shape. This display was interpreted as being

caused by specific local conditions, where population density is not

the key factor but instead indicates the local governance or planning

leadership, which can be different from one county (fokontany) to

another.

Surprisingly, distance to the rivers did not appear to influence

any land change transitions. This could be explained by two fac-

tors: First, rivers are not used as the main transportation means as

in other countries, and second, irrigation systems are not well

developed, so the agriculture relies essentially on rain-fed crop.

Furthermore, numerous water courses exist over the studied area,

yielding an explanatory variable with a limited range of values

(from 0 to 2.5 km, Figure 4), which may hinder detection of its

effect.

4.2 | On the contrasted effectiveness of
contrasting efforts

We observed that the two national parks that lie in the study area

have very distinct threats of and opportunities for land change, the

former being only little affected in contrast to the latter, which

exhibits a high rate of change. The reasons for such differences are

the historical conservation activities and the socioeconomic condi-

tions in the neighbouring communities. Indeed, Andohahela was cre-

ated 60 years ago (in 1939) in contrast to Midongy, which was

created more recently (in 1997). This underlines the effectiveness of

long-term conservation activities. From a modelling perspective, this

difference highlights the role of time or the time feedback involved in

such land use explanatory variables. This understanding should be

considered carefully when building scenarios based on change in land

tenure or rights, as these factors imply a lag in the cause–effect rela-

tionship or elasticity.

Moreover, population density is more important around Midongy

than around Andohahela (0.17 villages by square kilometre for

Midongy versus 0.14 for Andohahela in the 5-km buffer around the

National Parks), which increases the anthropogenic pressure on the

forest. At the northeastern edge of Midongy, many people are settled,

and the National Park is the only significant forest area accessible to

the local population. In addition, several roads crossover the park,

making it accessible. All these factors, which determine the pressure

of the population that seeks access to forest for agriculture, wood

fuel, and timber, can explain the higher rate of deforestation in

TABLE 5 Accuracy assessment
results

Land change Model AUC OA UAC UANC UA FOM

Deforestation RF 0.90 0.78 0.19 0.99 0.59 0.19

ME 0.84 0.91 0.26 0.95 0.61 0.15

GLM 0.81 0.91 0.23 0.95 0.59 0.13

Land degradation RF 0.88 0.75 0.11 0.99 0.55 0.11

ME 0.84 0.94 0.18 0.97 0.57 0.10

GLM 0.79 0.94 0.17 0.97 0.57 0.09

Land regeneration RF 0.93 0.77 0.02 1.00 0.51 0.02

ME 0.87 0.99 0.06 1.00 0.53 0.03

GLM 0.86 0.99 0.07 1.00 0.53 0.04

Note: See Table 2 for accuracy metric definitions and formulas.

Abbreviations: AUC, area under the curve; FOM, figure of merit; GLM, generalized linear model; ME,

maximum entropy; RF, random forest algorithm; OA, overall accuracy.

TABLE 6 Land change quantity scenarios for the 2014–2034
period

Land change
transitions

Land change quantity scenario

BAU
average
(ha yr−1)

BAU
trend
(ha yr−1) Alternative scenario

Deforestation 1,774 BAU

average

+195

50% decrease from

2013 level

Land

degradation

2,737 BAU

average

+113

50% decrease from

2013 level

Land

regeneration

302 302 BAU average

+ 10,000 ha of

sustainable land

management

Abbreviation: BAU, business-as-usual.
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Midongy National Park than in Andohahela, even though those parks

are managed by the same public entity.

4.3 | On the methodology

Spatially explicit land change models are legitimate for their scientific

empirical soundness, reproducibility, and ability to be assessed by val-

idation procedures (Castella & Verbug, 2007). In this study, the use of

the RF machine learning algorithm provided satisfactory results,

although it was not as robust for user accuracy of change as the other

inference models tested. This model was recently applied in a defor-

estation modelling application (Dezécache et al., 2017) but was not

compared with other models to our knowledge. No unique good

model exists; however, the machine learning algorithm and model

averaging may provide new solutions to increase our prediction abil-

ity. We observed, as others before have reported (Pontius et al.,

2008, Sloan and Pelletier, 2012), that the accuracy of the predicted

change relies on the amount of change observed. This was illustrated

with the land regeneration models that provided very low FOM

values. This shortage could be remediated by increasing the number

of years of historical observations (Sloan and Pelletier, 2012). The

use of a distinct calibration and validation period is often seen as a

good practice for accuracy assessment (Shoch et al., 2013), but

changes between the calibration and validation period in terms of

quantity of change or relative importance of drivers can generate sys-

tematic errors (Camacho Olmedo et al., 2015). In addition, a distinct

validation period reduces the number of observations required for

calibrating the models and our ability to understand ongoing changes.

The 14-year period used in this study is considered sufficient to cap-

ture such subtle land change processes as land degradation and

regeneration. Indeed, if one takes the soil organic carbon as the bio-

physical indicator of both land degradation and land regeneration, as

suggested by the United Nations Convention to Combat Desertifica-

tion, the literature reports that significant changes could occur—and

can be detected—at times scales of a few years and of decades for

both processes, respectively, in the tropics (Don, Schumacher, &

Freibauer, 2011).

F IGURE 6 Land change maps for the 2014–2034 period according to the three scenarios described in Table 4. BAU, business-as-usual
[Colour figure can be viewed at wileyonlinelibrary.com]

F IGURE 7 Land change allocation
results according to the three scenarios
for different extents: the Andohela
National Park, the Midongy National Park,
and outside those two perimeters. BAU,
business-as-usual [Colour figure can be

viewed at wileyonlinelibrary.com]
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Other limitations exist in the application of spatial modelling

techniques to forecast land degradation and regeneration that are

related to the definition and to pattern recognition. First, no com-

monly agreed upon quantitative land degradation definition exists

at the global or local scale. In this study, we considered land degra-

dation as the removal of vegetation or tree cover at a 30-m resolu-

tion. This is a similar approach as the land productivity change

indicator used as a proxy of land degradation worldwide (Brandt

et al., 2018; Cherlet et al., 2018; United Nations Environment Pro-

gramme, 2012; Yengoh et al., 2015). Second, the gain of vegetation

is a slow process and currently available only for 2000–2012 in

Hansen et al. (2013) and considers a no-tree cover in 2000. Other

definitions or input data set of land regeneration or degradation

would impact the results.

Finally, spatially explicit projections fail to capture change other

than that of “frontier” change, that is, deforestation front along the

forest edge (Sloan and Pelletier, 2012). In this study, deforestation

and degradation were fairly accurately predicted as both processes

relied highly on the forest edge variability. The location of

regeneration was also partly explained by forest edge, which, in real-

ity, may provide spurious results because small-scale regeneration

may occur far from forest resources. Indeed, regeneration potential is

steered by forest or agricultural management strategy, at a fine scale.

Addressing the regeneration potential requires more than spatial fac-

tors and requires an understanding of sociocultural and economic

drivers. For instance, an important land regeneration factor is the

reduction of the rotation of the crop-fallow length system (Labrière

et al., 2015), but this factor cannot be spatialized. However, we

believe our results on land regeneration allocation maps may help

policymakers and stakeholders to define appropriate interventions,

even at a local scale (Figure 8).

5 | CONCLUSIONS

The objective of this paper was to test and evaluate a new spatially

explicit land change modelling approach for the simultaneous forecast

and assessment of three main environmental processes (deforestation,

F IGURE 8 Landscape 3D view of the 2014 baseline and the land change outputs in 2034 obtained for the three scenarios and overlaid over

Google Earth imagery. BAU, either using the historical average amount of change (“BAU average”) or with consideration of the historical trend
('BAU trend'). BAU, business-as-usual [Colour figure can be viewed at wileyonlinelibrary.com]
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land degradation, and land regeneration) in one of the most

biodiversity-rich areas of the world.

Empirical driver analysis allowed the identification of threshold

values or tipping points regarding the potential land change drivers

tested. Amongst them, two biophysical and socioeconomic factors

(elevation and proximity to the forest edge) stand out in explaining

the three processes studied. The results highlight the nonlinear rela-

tionship of the drivers with the processes, which argue for the use of

nonlinear inference models such as machine learning algorithms.

The land change modelling approach developed in this study is a

first attempt to explore the potential of machine learning tools com-

bined with easy-to-access global land change data sets in an open

source modelling framework. The land change allocation and suitabil-

ity maps can be easily improved, as new or better quality input data

sets are made available or replicated to other regions. We believe that

such an approach can produce consistent and scalable information

that can accompany land use planning processes and help target inter-

ventions for preventing land degradation and maximizing the chance

of land regeneration. Land restoration planning can benefit from such

information on appropriate areas, but stakeholder participation and

ground surveys are needed to assess land rights, land use conflicts,

and implications for food security.
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