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High resolution and low uncertainty deforestation maps covering large spatial areas in tropical countries are
needed to plan efficient forest conservation and management programs such as REDD+ (Reducing Emissions
from Deforestation and Forest Degradation). Using an open-source free software (R, GRASS and QGis) and an
original statistical approach combining multi-date land cover observations based on Landsat satellite images
and the random forests classifier, we obtained up-to-date deforestation maps for the periods 2000–2005 and
2005–2010 with a minimum mapping unit of 0.36 ha for 7.7 M hectares, i.e. 40.3% of the tropical humid forest
and 20.6% of the tropical dry forest in Madagascar. Uncertainty in deforestation on the maps was calculated by
comparing the results of the classification to more than 30,000 visual interpretation points on a regular grid.
We assessed accuracy on a per-pixel basis (confusion matrix) and by measuring the relative surface difference
between wall-to-wall approach and point sampling. At the pixel level, user accuracy was 84.7% for stable land
cover and 60.7% for land cover change. On average for the whole study area, we obtained a relative difference
of 2% for stable land cover categories and 21.1% land cover change categories respectively between the wall-
to-wall and the point sampling approach. Depending on the study area, our conservative assessment of annual
deforestation rates ranged from 0.93 to 2.33%·yr−1 for the humid forest and from 0.46 to 1.17%·yr−1 for the
dry forest. Here we describe an approach to obtain deforestation maps with reliable uncertainty estimates that
can be transposed to other regions in the tropical world.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

Assessing changes in tropical forest cover is a challenging research
and operational topic that addresses issues like climate change, biodi-
versity conservation and sustainable ecosystem management. Global
net loss of forest area has been estimated at 5.2 million hectares per
year between 2000 and 2010 (FRA, 2010) and, according to themost re-
cent studies (Baccini et al., 2012; Harris et al., 2012), is responsible for
10% to 25% of anthropogenic greenhouse gas (GHG) emissions to the
atmosphere. Tropical deforestation is a major contributor to GHG
emissions because of the extent of forest being cleared each year and
because of the high carbon stock per unit area (Achard et al., 2010).
The REDD+ mechanism (Reducing Emissions from Deforestation and
ron, 75020 Paris, France. Tel.:

ghts reserved.
Forest Degradation) in the United Nations Framework Convention on
Climate Change (UNFCCC) aims to encourage developing countries to
slow down deforestation through a compensation mechanism. This
mechanism requires accurate, transparent, and cost-effective GHG
measurement and monitoring systems (Olander, Gibbs, Steininger,
Swenson, & Murray, 2008). Despite well established guidelines provid-
ed by the international scientific community (GOFC-GOLD, 2010; IPCC,
2006), improvements in remote sensing techniques and data availabil-
ity are still necessary to provide more accurate and cost-effective
estimates of forest change.

1.1. Techniques for estimating deforestation over large forest areas

Recent reviews of methods used to estimate deforestation highlight
two different methods of monitoring large areas of forest: the exhaus-
tive mapping of forest extent (also known as the “wall-to-wall”
approach) or point sampling (Achard et al., 2010; GOFC-GOLD, 2010;
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Hansen & Loveland, 2012). The wall-to-wall approach uses satellite
images (such as Landsat (Harper, Steininger, Tucker, Juhn, & Hawkins,
2007: Gutman et al., 2005), AVHRR (DeFries et al., 2002), MODIS
(Freidl et al., 2002) or MERIS (Bicheron et al., 2008)) to map the full
extent of forest and changes in forest area through hybrid techniques
that combine automated digital segmentation and/or classification
with visual interpretation (GOFC-GOLD, 2010, Rasi et al., 2012) or
fully automated techniques (Hansen et al., 2008; Huang et al., 2009;
Potapov et al., 2012). Point sampling approach consists in identifying
partial but representative land cover observations through ground
surveys or through visual interpretation of satellite images to estimate
forest and deforestation extent over the entire area (Rasi et al., 2012;
Steininger, Godoy, & Harper, 2009).

Point sampling reduces the operational cost of exhaustive analysis of
a large number of satellite images, while improving the thematic accu-
racy of (for example) regrowth or degradation assessment by focusing
on small areas (Achard et al., 2002; Duveiller, Defourny, Desclée, &
Mayaux, 2008; FRA, 2010; Rasi et al., 2011; Stach et al., 2009). However,
the accuracy of point sampling is closely linked to the quality of the
sampling design (Steininger et al., 2009) and does not enable the pro-
duction of deforestation maps of the entire forest area. Such maps are
however required to target conservation efforts and to allow consistent
spatial analysis of deforestation (Vieilledent, Grinand, & Vaudry, 2013).

Classical wall-to-wall land cover change analysis implies pairwise
image comparison. This method of detecting change has been widely
used (Harper et al., 2007; Stach et al., 2009) and provides useful
transition matrices describing change from one land category at
date 1 to another land category at date 2 (Duveiller et al., 2008;
Huang et al., 2009). But when two single date maps are used in
combination to derive land cover change, individual errors will be
multiplied if errors on the two maps are assumed to be independent
(Fuller, Smith, & Devereux, 2003). This seriously undermines the
accurate detection of subtle change in forest area, and it is consequently
recommended to combine satellite images acquired at many different
dates in a single analysis that identifies change directly (GOFC-GOLD,
chap. 2.6, 2010). In other words, supervised classification is performed
on stacked images acquired at many different dates. This technique
allows seasonal variations and vegetation dynamics to be taken into ac-
count (Pennec, Gond, & Sabatier, 2011). For instance, slash-and-burn
plots may subsequently have a different cover (a permanent crop,
fallow, secondary regrowth) and secondary forest, forested fallow and
intact forest may be confused depending on the selected date. Thus,
increasing the number of dates using time series of satellite images
reduces the uncertainty associated with land cover change classification.

1.2. Classification algorithms

Open access to the 20-year Landsat archive (called the Landsat Global
Land Survey Program) has greatly reduced the cost and facilitated the
processing of large time series for the estimation of land cover change
(Hansen & Loveland, 2012). Given that multi-date satellite images are
needed to reduce the uncertainty associated with land cover change
classification, the usual parametric classification algorithms (such as
classification by maximum likelihood) may not be appropriate for the
classification of combined multi-date images because of the heteroge-
neous spectral signature of land cover categories over large areas. To
overcome this problem, data mining and machine learning techniques
(including neural networks, decision trees, support vector machines
and ensemble classifiers) have recently emerged in remote sensing,mak-
ing it possible to dealwith complex land cover status and dynamics. Such
algorithms are efficient because they do not rely on the data distribution
assumption (e.g. normality), are able to handle noisy observation
(Breiman et al., 20010), and can be efficiently applied to large complex
datasets if supported by sufficient training data (Rodriguez-Galiano,
Ghimire, Rogan, Chica-Oimo, & Rigol-Sanchez, 2012). Among these algo-
rithms, the random forests (RF) classifier has already provided
interesting results in several studies using satellite images. For instance,
Schneider (2012) reported that RF outperformed maximum likelihood
classifier and was better than a support vector machine classification
based on accuracy assessment and visual interpretation of the resulting
maps. Previous RF applications include land cover classification using
Modis data (Aide et al., 2012; Clark, Aide, Grau, & Riner, 2010), Landsat
data (Gislason, Benediktsson, & Sveinsson, 2006; Lawrence, Bunn,
Powell, & Zambon, 2004; Rodriguez-Galiano et al., 2012; Schneider,
2012) or hyperspectral data (Ham, Chen, Crawford, &Gosh, 2005), digital
soil mapping (Grimm, Behrens, Märker, & Elsenbeer, 2008) and forest
biomass mapping (Baccini et al., 2012).

1.3. Accuracy assessment of land cover change

Accuracy assessment must be associated with deforestation maps,
as some authors consider errors in land cover change to be the main
source of error in estimates of GHG emissions (Harris et al., 2012;
Pelletier, Ramankutty, & Potvin, 2011). A common approach for accura-
cy assessment implies computing an error matrix from independent
ground survey observations or fromvisual interpretation of high resolu-
tion images to quantify class specific accuracies and overall map accura-
cy. A probability based sampling design is required for the accurate
error estimation of land change categories (Stehman, 2009). Assessing
a land cover map is known to be difficult, but assessing land cover
change maps is even more challenging (Hansen & Loveland, 2012)
mainly due to the difficulty in obtaining accurate land cover change ref-
erence datasets (Foody, 2010). Field surveys of historical change are
tricky since they involve questioning people with a deep knowledge
of the plot's history (e.g. the landowner). Ground truth observation
via remote sensing is also constrained by the availability and resolution
of the images. Another problem with change detection assessment is
the extent of the change. Fuller et al. (2003) estimate that “small to me-
dium scale changes requires levels of precision in mapping which are
near impossible to achieve […] unless it (the survey) is tailor made
and rigorously applied to the recording of change”. For all these reasons,
accurate assessment of land cover change is not a trivial task and re-
quires particular attention.

1.4. Objectives

Madagascar is universally recognized for its high level of biodi-
versity and endemism (Goodman & Benstead, 2005). The biodiversi-
ty is mainly located in its tropical forests. In the last 50 years,
Madagascar has experienced a dramatic loss of forest (Harper et al.,
2007) due to traditional slash and burn, pasture extension, charcoal
production, illegal logging of precious wood, and mining activities,
with consequences for both biodiversity conservation and GHG
emissions. To curb deforestation, Madagascar is highly committed
to the implementation of the REDD+ program through both the
development of REDD+ pilot projects at regional scale and policy
decisions at national scale. Previous work on land cover and land
cover change mapping has provided valuable insight into vegetation
status (Mayaux, Gond, & Bartholomé, 2000; Mayaux, Bartholomé,
Fritz, & Belward, 2004; Moat & Smith, 2007) and dynamics (Harper
et al., 2007). However these insights cannot be used directly since
the definition of forest varies widely among studies and does not
provide sufficient levels of information (a resolution of 1 km or a
minimum mapping unit of 2 ha) for the detection of subtle change.
Using Madagascar as a case study, we first used the RF algorithm to
map land cover change using a 10-year time series of Landsat TM
satellite images covering large forest areas. Second, we calculated
up-to-date annual deforestation rates for the period 2000 to 2010,
and third, we assessed the accuracy of forest cover change using more
than 30,000 visual interpretation points on a regular grid. The specific
aim of this study was to develop a transparent and cost-effective
methodology to obtain reliable deforestation maps associated with
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uncertainty estimates that can be easily transposed to other regions in
the tropical world prone to subsistence agriculture.

2. Material and method

2.1. Study area

The study area was divided into five separate forest zones in
Madagascar (Fig. 1) covering a total area of 7.7 million hectares.
According to the most recent vegetation map (Moat & Smith, 2007),
the study areas include 2,407,000 ha of tropical forest divided into
372,000 ha of spiny-dry forest (with precipitation b 1000 mm·yr−1)
and 2,035,000 ha of humid forest (with precipitation N 1000 mm·yr−1)
in 2005. Except for the dry region, all of these sites are located in hilly
areas with medium to steep slopes, which is the only remaining typical
intact humid forest landscape inMadagascar. Slash and burn and shifting
cultivation are among the main agricultural practices found everywhere.

Each of the study areas – or reference areas in the REDD+ jargon –

encompasses project sites of a REDD+ pilot program called Holistic
Programme for Conservation of Forests in Madagascar (Fig. 1). The
study areas were manually delineated using local knowledge in order
to include a large forested area with homogeneous bio-physical condi-
tions (e.g. climate or topographic range), similar to those of the project
Fandriana 

COFAV-South 

Beampingaratsy 

Mandrare 
watershed 

COMATSA 

Fig. 1. Location of the study areas and project sites inMadagascar. Background satellite images
the eco-region map is the Global 200 World Wide Fund project (http://en.wikipedia.org/wiki/
sites. The project sites cover more than 500,000 ha of forest out of a
total of 850,000 ha concerned by the creation of new protected areas,
forest restoration and promotion of sustainable agriculture as an alter-
native to slash-and-burn practices. The extent, the project sites and
the study areas, were used to produce estimates of deforestation rates.

2.2. Landsat image collection and pre-processing

The steps of the procedure are summarized in Fig. 2. Multi-temporal
studies require the use of geometrically consistent images. Standard
orthorectified Landsat image databases are available for the years
1975, 1990, and 2000 worldwide (Tucker, Grant, & Dykstra, 2004).
Unfortunately, in our study area, the GLS 2005 Landsat product
(Gutman et al., 2005) was mainly based upon Landsat 7 which has
high rates of no data values (stripping) due to its failure in 2003. For
this reason, Landsat TM images were collected for reference dates in
2005 and 2010. We selected images with the lowest cloud cover and
which were available in a time frame of plus or minus one year com-
pared to the reference date. These criteriaweremet for every site except
the northern site, which had a large permanent cloud cover. For this
particular site, we looked for suitable images from 1990. From the
USGS EROS portal, level 1 terrain corrected (L1T) images for 2005 and
2010 were downloaded and all images were visually inspected for
are Landsat 5 from circa 2005 in a false color composite display, RGB = 542. The source of
Global_200).

http://en.wikipedia.org/wiki/Global_200


Fig. 2. Flow diagram of the processing steps. FCC stands for Forest Cover Change.
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geometric precision based on the GLS 2000 image. The data showed a
good overall geometric precision with less than 1 pixel offset com-
pared with the 2000 image. Radiometric normalization was not
performed, since this step is not required when images are analyzed
simultaneously rather than individually (Song,Woodcock, Seto, Pax-
Lenney, & Macomber, 2001 cited in Schneider, 2012) and because
decision tree algorithms can handle variables on a relative scale.
We produced mosaic images for each date and each site by simple
overlay, with the least cloudy image at the top of the mosaic. Finally,
we derived a normalized difference vegetation index (NDVI) and
a normalized infrared index (NIRI) from the mosaic images to obtain
an enhanced auxiliary dataset. The Landsat image database processed
in this study is presented in Table 1.

2.3. Classification of land cover change

2.3.1. Collection of training plot data
Accurate training plot data are essential for supervised classification.

Several studies have shown that non-parametric machine learning
algorithms, such as random forests, need a larger number of training
data to attain optimal results (Potapov et al., 2012; Rodriguez-Galiano
et al., 2012; Schneider, 2012).We conducted a free selection of training
plots to obtain themost representative coverage of land cover and land
cover change either in the number of features or spatial distribution.
Visual interpretation of many small subsets of images was performed
where a cluster of polygons representing the diversity of land cover,
Table 1
Landsat image database used in this study.

Region Ref. scene Date ~2000 Date ~2005 Date ~2010

COMATSA 158-070 22/08/1996 14/05/2006 08/09/2008
159-070 29/06/1990 31/05/2004 30/04/2010

Fandriana 158-073 29/09/2001 24/03/2005 30/09/2009
158-074 28/10/2000 25/04/2005 17/11/2010
159-074 29/04/2001 10/01/2005 30/04/2010

COFAV-South 158-075 22/04/2001 03/08/2005 17/11/2010
159-075 29/04/2001 09/12/2005 30/04/2010
158-076 22/04/2001 03/08/2005 17/11/2010
159-076 29/04/2001 10/01/2005 08/11/2010

Beampingaratsy 158-077 13/09/2001 25/04/2005 17/11/2010
159-077 28/05/2000 06/08/2006 11/01/2011

Mandrare 158-077 13/09/2001 25/04/2005 17/11/2010
159-077 28/05/2000 06/08/2006 11/01/2011
and land cover change was delineated in this particular area. By experi-
ence, we found that a scale of 1:10,000 was suitable to distinguish
shifting cultivation cropland in a sufficiently large portion of the land-
scape. A subset of images corresponds approximately to what a photo
interpreter can see in the screen display at a scale of 1:10,000. An
example of visual interpretation of cluster of training plot is presented
in Fig. 3. Additional sources of information, including freely available
QuickBird images from Google Earth and expert knowledge were used
as reference material to help interpretation. We used six land cover
categories (humid forest, dry forest, cropland-savannah, wetland,
rock-bare soil, cloud and shadow) which were observed for each date.
For each land cover, a minimum of 20 training plots were targeted.
Next, we aggregated the observation into one single forest cover change
nomenclature, including six land cover categories over the 2000–2010
period and four land cover change categories (deforestation of humid
and dry forest for both monitoring periods). For land cover change
categories, efforts were made to capture the entire extent of the defor-
estation patches, contrary to land cover categories for which random or
odd shapes were used. Specific rules were applied to reduce the extent
of clouds and shadows. For instance, a plot observed to be forested at
date 1, cloudy at date 2, and forested at date 3 was considered to be
forested throughout the historical period. Although we were easily
able to deduce the fate of forest or non-forest area in many cases, this
was not possible in all cases. For instance, a cloud-shadow classification
was used when cloud or shadow was observed at date 2, while forest
was observed at date 1 and non-forest at date 3. This method enabled
us to reduce the extent of clouds and shadows without entirely sup-
pressing them.
2.3.2. Classification with random forests
Several authors have shown that land cover classifications with RF

outperform classifications with other types of algorithms such as the
classification by maximum likelihood and by support vector machines
(Gislason et al., 2006; Schneider, 2012). RF is a decision tree algorithm
considered to be an improved version of the Classification and Regres-
sion Tree (CART, Breiman, Friedman, Olshen, & Stone, 1984). Basically,
it randomly selects a sample of observations and a sample of variables
many times (default value of 500) to produce a large number of small
classification trees. These small trees are then aggregated and amajority
vote rule is applied to determine the final category (Breiman, 2001).
This algorithm can be considered as a black box, as no clear class statis-
tical signature is computed. However it provides an internal classifica-
tion accuracy measurement (out-of-the-bag error) and the relative
importance of the variables, which provides valuable insight into the
modeled complex relationship (see Section 2.3.3). We developed
models which use the selected reflective bands (Landsat TM band 1, 4
and 5) and indexes (NDVI and NIRI) for every date. These variables
were selected for their well known land cover discriminating power
and which, following some preliminary tests (not shown), led to no in-
crease in accuracy when the remaining bands (2, 3 and 7) were added.
Following recommendations from Rodriguez-Galiano et al. (2012), we
used default parameters for the two main RF parameters (number of
trees and the number of random split variables). We estimated classifi-
cation accuracy using a confusion matrix obtained from an ad-hoc test
procedure using 70% of the training plots as classification data and
30% of the training plots as test data. We optimized the training plot
dataset until we reachedmaximum steady accuracy from this confusion
matrix. This refinement task, also referred as internal validation (Fig. 2),
was performed by adding new training plots to obviously misclassified
locations or deleting some that may have been sources of confusion.
This involved detailed analysis of the errormatrix, training plot location,
and map outputs at each classification run. Although all the categories
were considered, we focused our attention on confusions related to
land cover change categories. We finally used the entire training plot
dataset to produce a FCC map of the whole study area.



ID 2000 2005 2010 FCC000510 Legend

1 F P P FPP Deforested 2000-2005

2 F P P FPP Deforested 2000-2005

3 F F F FFF Forest 2000-2010

4 P P P PPP Non-Forest 2000-2010

5 F P P FPP Deforested 2000-2005

6 F F F FFF Forest 2000-2010

7 F F P FFP Deforested 2005-20010

1

3

4

2
6

7

5

22/05/2007 29/04/2001

09/12/2005 17/11/2010

Fig. 3. Stable land cover and examples of visual interpretation of land cover change using QGis, QuickBird/Google Earth images and Landsat images. From top left to bottom right: cluster of
training plots overlaying QuickBird images fromGoogle Earth (22/05/2007) and Landsat TM false color composite RGB = 4, 5, and 1 acquired at dates 29/04/2001, 9/12/2005 and 17/11/2010.
Individual observations for each date and final forest cover change class for the seven training plots are presented in the table of attributes below the images.
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2.3.3. Sampling intensity and importance of variables
The classification described above required a high level of expertise

(visual interpretation of images and interpretation of confusion matri-
ces), which can be fastidious and time-consuming when large areas
are involved. For that reason, we investigated which sampling intensity
would be appropriate to achieve satisfactory classification and whether
all the variables used were relevant in the modeling process. First, we
tested a sampling intensity ranging from 30% to 90% of the entire train-
ing plot dataset. Two metrics, the out-the-bag error provided by the RF
algorithmand overall accuracywere calculated using the remaining test
plots not used to build themodel. The out-of-the-bag error is an internal
accuracy metrics calculated using about one third of the input dataset
not used for the construction of the trees, and is considered as an unbi-
ased estimate of the error (Breiman, 2001). Second, we evaluated the
importance of the variables used for the final classification model. Two
measures exist in the RF algorithm to measure variable importance.
We used only one, referred to as the mean decrease in accuracy.
The latter applies variable permutation when constructing classifica-
tion trees andmeasures the relative difference (decrease) in the out-
of-the-bag error compared with a prior without-permutation test. A
high decrease means the variable is important for the classification.
Results are averaged on all trees and normalized on a 0–100 scale
by the standard deviation of the differences.

2.3.4. Post processing
As previously mentioned in Section 2.3.1, clouds and shadows

remained in the final output maps. The extent of clouds and shadows
remaining in the raw classification output was less than 2.5% of the
total study area for all sites except for the cloudy Comatsa site (14.1%).
In order to produce a full coverage map and calculate accurate and
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conservative deforestation estimates, we used an auxiliary map show-
ing the extent of forest in 2005 (MEFT, 2009). Cloud and shadow pixels
in the final FCC map were then replaced by forest or non-forest pixel
values from the 2005 map (Fig. 4). In addition, we applied a minimum
mapping unit filtering process using an in-house Grass script that has
two folds. First, deforestation patches with an area of less than 0.36 ha
(2 × 2 pixels) were replaced by the majority class found in a 3 × 3
moving window. Second, a simple majority vote using the same 3 × 3
movingwindowwas applied for other categories. The 0.36 ha threshold
was chosenwith respect to the geometric precision of the input datasets
(around 1 pixel). This approachwas considered highly conservative (no
overestimation of deforestation) regarding deforestation intensity as no
deforestation pixels were added and small patches were removed. In
another study (Steininger et al., 2009), Landsat imageswith a resolution
of 28.5 m allowed the production of aminimummapping unit of 0.3 ha.

2.3.5. Estimating deforestation rates
Deforestation rates can be expressed as the area deforested over a

given period of time compared to the initial forest area (Puyravaud,
2003). Despite our objective of analyzing deforestation over a period
spanning of five years, selected suitable images oscillated around the
pivot years 2000, 2005 and 2010 (Table 1) resulting in variable time in-
tervals between land cover observations. Time intervals ranged from
three years and fivemonths to six years and threemonths, with one ex-
ception for the north–east site, which showed a time interval of
13 years for the first period and three years for the second. To account
for these large time differences, we used a weighted mean to estimate
the average time interval between land cover observations for each
study area (Vieilledent et al., 2013). The weights corresponded to the
area (in km2) of the scene with a given time interval. Following
Puyravaud (2003), we used Eq. (1) to estimate the annual deforestation
rate.

θ ¼ 1− 1−A1−A2

A1

� �1
Y

: ð1Þ

The annual deforestation rate θwas expressed as a function of A1 and
A2, the forest areas for the study areas at dates 1 and 2 and Y, theweight-
ed average time interval. Ywas expressed as a function of the numberN

of the different time intervals tn (with n = 1,…,N) and the Y ¼ 1=Nð Þ

∑
n

tn sn=∑
n

sn

� �
areaof forest at date1with time-interval tn (denoted sn).
Fig. 4. Illustration of post-processing steps: 1) minimummapping unit filtering of 0.36 ha usin
jority vote for other categories (first to second panel) and 2) cloud and shadow removal using t
yellow the non forest, orange deforestation in the 2000–2005 interval, and red deforestation in
terpretation of the references to color in this figure legend, the reader is referred to the web ve
2.4. Accuracy assessment

Accuracy was assessed using a point sampling approach and follow-
ing general guidelines, i.e. the use of a large sample and a low sample
rate (Duveiller et al., 2008; Stehman, 2005). In this study, we used a
systematic stratified sampling design with two strata (Fig. 5). The first
stratum was defined to assess the extent of land cover by creating a 2-
km grid, each intersection of the grid being a sample location. The
second stratumwas designed to capture smaller pattern such as defor-
estation, and a hot spot analysis was thus performed to delineate such
areas. We used the fire information resource management system
(FIRMS, http://firefly.geog.umd.edu/firms) to set up a fire location
database for the last decade. We intersected the point database with
the 2-km grid and selected the tile with more than five fires and within
a distance of less than 500 m from the forest edge in 1990. The latter
criterion was added in order to remove fire detection due to bushfire
wherever possible. A 500-m grid was then created on these hot spot
tiles, each intersection of the grid being a sample location. The two
strata were merged and we finally obtained a total of 30,106 sampling
points with 18,729 samples for stratum 1 (whole area) and 11,377
sample for stratum 2 (hot spots). At each point, the underlying pixel
and its surroundings pixels (a total of 9 pixels)were visually interpreted
by five photo interpreters who used the same protocol based on Qgis
software. We particularly focused on the height of observation (scale)
using zoom in and out functions to ensure the observation was made
at pixel level. A majority vote rule was applied on the nine surrounding
pixels to retain only one value for each point, thus corresponding to a
sampling rate of 0.1% for the entire study area. Land cover and changes
in land cover at the sampling pointswere classified by visual interpreta-
tion using the samemethod as that used for the FCC map, based on the
same image mosaics. Accuracy was assessed using a confusion matrix
that compared the visually interpreted sampling points and the FCC
map, at the pixel level. We used the confusion matrix to estimate both
the overall accuracy of the map and land category errors of commission
and omission (Girard & Girard, 1999). In this study, we focused on
category errors, which allowed us to derive the mean error of commis-
sion and omission for each category. This resulted in a first accuracy
indicator referred to as per-pixel accuracy in this paper. We derived a
second user-oriented indicator by calculating the relative difference in
area derived from the point sampling approach and the FCC map. In
the point sampling approach, areas were first derived using the formu-
las presented in Stach et al. (2009) and then using Eq. (1) to calculate
deforestation rates. Relative differences in surface area were computed
for the stable land cover categories and relative differences in the defor-
estation rate for the land cover change categories.
g a 3 × 3 moving window that retains only 2 × 2 deforestation patches and applies a ma-
he 2005 forest map (second to third panel). Green represents the extent of the forest, light
the 2005–2010 interval. White pixels represent clouds, and black pixels shadows. (For in-
rsion of this article.)

http://firefly.geog.umd.edu/firms


Fig. 5. Illustration of the point sampling designwith the two strata used for the assessment of accuracy. Stratum1 corresponds to one sample every 2 km over the entire study area (area in
gray and blue dots) and stratum 2 corresponds to one sample every 500 m in previously located hot spot areas (area in yellow and yellow dots). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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2.5. Transparency and repeatability of the method

To achieve the maximum level of transparency and repeatability,
efforts were made i) to minimize pre-processing steps, ii) to fully
describe training plot polygons in a table of attributes, and iii) to use
open source software (GRASS, QGis and R). These programs were used
in a complementary fashion and, except for visual interpretation, all
the steps were sequenced in a command line R-GRASS script available
upon request from the authors.

3. Results

3.1. Sampling intensity and importance of the variables

Our primary goal was to test the ability of the RF algorithm tomap
small forest cover change over large areas in two time periods.
Several interesting conclusions can be drawn from the calibration
step using RF. First the results of the sampling intensity test revealed
substantially different patterns for the out-of-the-bag accuracy
computed by the algorithm and overall accuracy computed from
the test dataset (Fig. 6 f,g,h,i,j). The former showed a relatively
homogeneous value of 0.95 with a maximum variation of 0.03 for the
whole sampling intensity range, whereas the latter produced values
ranging from 0.67 to 0.88. We further analyzed the trend of overall
accuracy with an increasing number of plots used in the calibration.
There was a clear improvement in accuracy with an increase in
sampling intensity despite the fact the trend was not linear. It should
be noted that at this stage, only overall accuracy was observed from
the point of view of the producer and class level results will be
presented from the point of view of the user in Section 3.2 below.
These tests were carried out on the entire training plot dataset which
was composed of 160 to 295 training plots per study area, 39–117
plots being interpreted as stable land cover and 22–51 plots as land
cover change (Fig. 6 a,b,c,d,e). It should be noted that we observed
only small patches of deforestation (Fig. 3), with a median size of
3.1 ha. Second, regarding the importance of the variables, results
showed that certain Landsat bands played a more important role than
others in the classification (Fig. 6 k,l,m,o,p). We noted the importance
of band 5 and band 1 in every study area and particularly for the
Comatsa, Fandriana and Mandrare watersheds. Surprisingly, the vege-
tation indexes (NDVI and NIRI) did not have higher discriminative
power than these two reflective bands. All the variables had more



Fig. 6. Random forest calibration summary statistics. The first column corresponds to the number of overall training plots, the second column to the sampling intensity test and the third
column to the relative importance of the variables.
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Fig. 7. Satellite images and final map of forest cover change for the periods 2000–2005–2010. a) QuickBird/Google Earth acquired on March 17, 2011. b) Landsat false color composite
RGB = TM5-3-2 acquired on November 17, 2010. c) Forest Cover Change 2000–2010map, green represents the extent of the forest, light yellow represents non-forest, orange represents
deforestation between 2000 and 2005, and red represents deforestation between 2005 and 2010. The FCCmap is available in kmz format in Supplementarymaterial. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
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than 40% relative importance in each study area. Finally, five cloud-free
maps of forest cover change (FCC) or gross deforestation over
7.7 million hectares were produced using Landsat images. Examples
of the output maps are presented in Fig. 7.

3.2. Accuracy assessment

3.2.1. Per-pixel accuracy
Results of accuracy assessment at the pixel level are presented in the

confusion matrix (Table 2) and Fig. 8b. Regarding the error matrix,
although overall accuracy was satisfactory (83.3%) as was the accuracy
of forest and crop land categories (from 81.5 to 90.3%), significantly
lower values were obtained for deforestation classes. We recorded
producer accuracies of 40.5 and 41.6% for thefirst and second deforesta-
tion periods respectively, and user accuracies of 57.2 and 64.3% for the
same periods. Confusions were identified between forest and cropland
categories but to a very limited extent between forest and deforestation
classes. The matrix also highlighted cloud and shadow point observa-
tions (category 999 with 581 points) which can be considered as
“uncategorized” since the interpretation of the three time series did
not allow these points to be attributed to other land categories. By
removing these points for testing purposes, we observed a limited
increase (2% to 3%) in user accuracy in the forest (FFF) and deforestation
in the second period (FFP) categories. Also, only a few points (n = 62)
were observed to be cropland or savannah (PPP) whereas they were
mapped as rock or bare soil (OOO). In addition, the pattern of
Table 2
Error matrix at pixel level with the FCC map and the observed sample points.

Category Observation at sample points

FCC map FFF PPP HHH FFP, FPP

FFF 9045 1113 3 338 321
PPP 1189 14,995 6 236 391
HHH 7 154 13 3 1
FFP, 80 77 439 54
FPP 108 205 69 546
OOO 1 62
Total 10,430 16,606 22 1085 1313

Note: Overall accuracy = 83.3%; Kappa Index of Agreement = 0.70. Note 2: FCC: Forest C
Deforestation between 2000 and 2005; PPP: Savannah and cropland; HHH: Wetland; OOO: O
user accuracy.

a Mean estimates of stable land cover and land cover change categories.
deforestation on the FCCmap can be considered conservative (i.e. defor-
estation is not overestimated) for two reasons. First, the number of de-
forestation observations was around 30% to 35% lower for the FCC map
than the observations made at sampling points. Second, the errors of
omission were significantly higher than the errors of commission,
which suggests that deforestation was rarely predicted where forest
or cropland was observed. We observed similar trends at each site
with lower values for land cover change categories compared with
steady land cover categories (Fig. 8, b).
3.2.2. Relative difference measurement
Based on surface areas computed from both the FCC map and the

point sampling method, we computed the relative difference on the
surface area (forest and cropland/pasture) and the annual deforesta-
tion rate (deforestation period 1 and 2) (Fig. 8c). We found very
small average relative difference (2%) between the estimated surface
area for forest and crop & pasture. All the study areas showed values
below 10% except for the Mandrare deciduous dry forest, where a
difference of 14.6% was recorded.

On the other hand, relative differences in annual deforestation rates
varied (from 8.5 to 49.5%) depending on the study area and the study
period. These relative differences combined multiple sources of errors
in both datasets, including supervised classification errors on the FCC
map and manual labeling of the land cover in the point sampling
approach. However, combining all the study areas, we measured a
P (%) U (%) Pa (%) Ua (%)

999 Total

279 11,099 86.7 81.5 88.5 84.7
240 17,057 90.3 87.9

2 180 59.1 7.2
33 683 40.5 64.3 41.0 60.7
27 955 41.6 57.2

63
581 30,037

over Change; FFF: Forest 2000–2010; FFP, deforestation between 2005 and 2010, FPP:
ther land, including Bare soil and rock; 999: Cloud or shadow; P, producer accuracy; U,



Fig. 8. Accuracy assessment. a) Number of samples observed in each category, b) per-pixel accuracy, and c) relative difference (area and deforestation rate) between point sampling and
FCC approach. Defor P1: Deforestation in period 1 (2000–2005), Defor P2: Deforestation in period 2 (2005–2010).

Table 4
Deforestation estimates for each study area and its related project site. ⁎The period is
approximate in this table. It is valid for all sites except Comatsa. For the exact date of the
processed image, see Table 1.

Gross
deforestation

Period⁎ ha·y−1 %·y−1

2000–
2005

2005–
2010

2000–
2005

2005–
2010
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satisfactorily limited difference between the two historical datasets,
14% for the first period and 21.1% for the second.

3.3. Analyses of deforestation estimates and trends

The FCC maps were then used to derive forest area (Table 3) and
deforestation estimates (Table 4) statistics for the study areas and the
project sites. We measured a total forest cover of 2407 thousand
hectares (kha) in the whole study area and 528 kha in the project
sites in 2010. This represents 25.5% and 5.6% of the national natural
forest cover respectively (MEFT, 2009). According to the latest vegeta-
tion map (Moat & Smith, 2007), the present study covers 43.3% of the
humid forest and 20.6% of dry forest.Wemeasured 174,725 ha of defor-
estation in the first period and 108.983 ha in the second period corre-
sponding to a mean deforestation rate of 1.17%·yr−1 and 0.94%·yr−1

in the study areas. In the project sites, the figures were significantly
Table 3
Forest surface in thousands of hectares for each study area and its related project site.

Forest areas in 2010 (ha × 1000) Type Study area Project site

Comatsa Humid 1008 216
Fandriana Humid 275 24
Cofav-south Humid 489 113
Beampingaratsy Humid 263 54
Mandrare Spiny 372 122
All 2407 528
lower, 0.64%·yr−1 and 0.55%·yr−1 (Table 4). We also observed high
variability of the annual deforestation rate depending on the study
area. The lowest rates were observed in the tropical humid forest north-
ern site (0.19%·yr−1) and in the dry spiny forest located in the southern
part (0.28%·yr−1). The highest deforestation rate (2.48%·yr−1) was
observed in the Fandriana site. We identified an overall slight decrease
in the annual deforestation rate when the figures for the first period
were compared with those for the second period. Only two study
Study areas Comatsa 8365 8859 0.77 0.86
Fandriana 8255 6875 2.50 2.33
Cofav-South 7238 4739 1.36 0.93
Beampingaratsy 2890 2800 1.01 1.03
Mandrare 1791 1873 0.46 0.50
All 28,540 25,145 1.17 0.94

Project sites Comatsa 687 402 0.31 0.19
Fandriana 721 656 2.48 2.53
Cofav-South 1537 745 1.27 0.64
Beampingaratsy 336 508 0.59 0.92
Mandrare 350 545 0.28 0.44
All 3630 2856 0.64 0.55



Table 5
Comparison of annual deforestation rates for different periods.

Study area Period MEFT et al., 2009 FCC, present study

Comatsa 1990–2000 0.33
2000–2005 0.11 0.77
2005–2010 0.86

Fandriana 1990–2000 1.57
2000–2005 1.45 2.50
2005–2010 2.33

Cofav-s 1990–2000 1.21
2000–2005 0.19 1.36
2005–2010 0.93

Beampingaratsy 1990–2000 0.88
2000–2005 1.76 1.01
2005–2010 1.03

Mandare watershed 1990–2000 0.19
2000–2005 0.92 0.46
2005–2010 0.50
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areas showed a significant change in the deforestation rate: a decrease
in Cofav-south and an increase in Comatsa. Within the project sites,
the changesweremoremarked: four out of five project sites underwent
a significant change.

4. Discussion and conclusion

4.1. The accuracy of the method

Results concerning accuracy showed averaged user accuracy of 84.7%
for stable land cover and 60.7% for land cover change at the pixel level. For
the whole study area, we recorded relative differences between wall-to-
wall and point sampling estimates of 2% and 21.1% for stable land cover
and land cover change categories respectively. Concerning per-pixel
measurement accuracy, we found that overall accuracy and stable land
cover accuracy were consistent with that of other studies which used
Landsat imagery to map deforestation at sub-national scale (Duveiller
et al., 2008; Huang et al., 2009). These authors obtained accuracy mea-
surement of 92% and 93% or higher on average. However, our land
cover change accuracies were lower. Our values cannot be compared to
other studies as change at pixel level is rarely validated because of the
technical challenge of collecting an accurate reference dataset (Foody,
2010). We observed significant discrepancies between producer (41%)
and user accuracy (60.7%). This suggests that the map we produced
tends to omit deforestation rather than predicting deforestation beyond
its true extent. Relative difference measurements showed a quite differ-
ent pattern. Forest and non-forested areas measured on the FCC map
and the point sampling were very similar. Land cover change categories
also showed very good agreement on themeasured annual deforestation
rate. Overall, these results suggest that stable land cover and land cover
change have significantly different accuracy magnitudes. In this respect,
when developing a change detection analysis, special efforts should be
made to record change class accuracy (Fuller et al., 2003). The stratified
systematic sampling validation procedure presented in this study was
particularly ambitious (more than 30,000 points observed), since we
wanted to obtain independent and statistically valid estimates. Even
with this intense visual-interpretation effort, we only obtained a few
hundred points that fell within the deforestation categories. It should be
noted that the visual-interpretation process is also highly prone to
misclassification (interpreter subjectivity errors). Therefore, the valida-
tion process applied in this study and discussed above refers more to rel-
ative accuracy assessment or consistency assessment. To better account
for subjectivity errors, a preliminary trial should be conducted consisting
of repeated observation of a sample subset by all the photo interpreters.
Although simple, this technique is also critical and time consuming
since the sample subset has to be representative of all the observations.

4.2. Comparison with other annual deforestation rate estimates

This paper shows that for all study areas combined, themean defores-
tation rate during the 2000–2005 periodwas 1.17%·yr−1 and 0.94%·yr−1

during the 2005–2010 period. We further investigated the results of this
study by comparing them with previous estimates at national and sub-
regional scale. Madagascar is recognized to be the country with the
highest annual deforestation rate of hot spots, up to 4.7%·yr−1 according
to Achard et al. (2002). Previous studies of deforestation in Madagascar
included a four-date analysis, from 1950 to 2000 (Harper et al., 2007),
and a three-date analysis, from 1900 to 2000 (MEFT, 2009), both at na-
tional scale, using also Landsat TM images. The latter recorded a decrease
from 0.8% 1990–2000 to 0.53%·yr−1 for 2000–2005. MEFT (2009) was
compared with the FCC map presented in this paper using the same
study areas and for all the periods of time covered (Table 5). We found
limited agreement between the two FCCmaps on the overlapping period
(2000–2005). We identified four possible explanations for these marked
differences. First, the date of the satellite images used in MEFT (2009)
was not known exactly, and so a fixed time step of 5 years was used.
Fromour experience,we are aware that the time interval is rarely exactly
five years (Table 1). This can lead to marked variations in annual defor-
estation rates (Puyravaud, 2003; Vieilledent et al., 2013). Second, in the
map by MEFT (2009), there is still a remaining cloud and shadow class
which may conceal large local forested/deforested areas. Third, the min-
imum mapping unit post-processing step may be responsible for a fair
amount of difference. Indeed, the FCC map produced in our study used
a 0.36 ha MMU whereas the MEFT (2009) FCC map used a 2 ha MMU,
which may overlook many small shifting cultivation plots. Lower values
in the first three study areas may be partly explained by this. Finally, the
definition of forest was not exactly the same in the two studies, especial-
ly the definition of dry forest (2 m vs. 5 m minimum height). However,
thismay not be a real reason in tropical humid forest study areas because
forest plots above the defined height are easily recognized. Moreover,
the trendmeasured is highly informative due to the fact that an increase
or decrease in the rate of deforestation that occurs several times in a five-
year period is unlikely at sub-regional scale. In this respect, the FCC map
produced in this study was considered coherent, as the maximum
change recordedwas a 30% decrease in the rate of deforestation between
the two periods studied in this paper.
4.3. On the methodology

The method presented in this study was tested in one of the most
difficult tropical regions for forest cover change monitoring since it
covers a wide area with small deforestation plots (slash and burn prac-
tices) on steep slopes with frequent to permanent cloud cover. The
study produced two main results.

First, using stackedmulti-date images is a powerful way of reducing
classification errors, and enables better characterization of small com-
plex land cover change status. While it is clearly useful to perform a
bi-temporal land cover change analysis to produce a transition matrix
with no prior information, this method is limited when the change
monitored is small compared to the image resolution. In this context,
small geometric and thematic errors such as confusion between subtle
land cover classes (e.g. two different forest strata, thicket/dry forest,
and regeneration/fallow) may greatly compromise true detection of
change. As previously observed by Fuller et al. (2003), classification
errorsmay be of the samemagnitude as the change itself or even greater.
On the other hand, this study confirmed recent observations (Schneider,
2012) that multiplying image datasets acquired at different dates allows
successful characterization of land cover and land cover change by
incorporating seasonal and vegetation dynamics even in complex and
heterogeneous situations. The drawback of themethod is that the change
class needs to be identified prior to image processing. Consequently the
approach developed in this study should be used with clear objectives
and known change categories.
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Second, with complex datasets and land cover, a machine learn-
ing algorithm should be used. Random forest was found to signifi-
cantly improve accuracy and the related visual output when a
supplementary training plot was added. This study confirmed that
RF (like any decision tree algorithm) requires additional high quality
training plot data (Gislason et al., 2006). The availability of VHR im-
ages such as the QuickBird/Google Earth image partially fulfills this
need for information without extensive field surveys. Refinement
of the output was mainly based on the confusion matrix set using a
test dataset. Unlike Rodriguez-Galiano et al. (2012), who suggested
using the out-of-the-bag estimator as an unbiased classification
accuracy estimator, we found that this indicator was not appropriate
for reliable assessment of overall accuracy. Furthermore, optimal
sampling intensity was difficult to assess since, contrary to expectations,
the trends of accuracy measurement with increasing sampling intensity
did not show the same pattern depending on the study area. The reason
may be the variability of the results, which, as shown by Schneider
(2012) can be high, depending on the experimental design. In this
study, the test set was sufficiently large to provide unbiased estimates
but not to assess the variability of the error using k-fold cross validation
for some categories. Therefore, further calibration tests using k-fold
cross validation or repeated bootstrap samples aswell as additional train-
ing samples would be required to draw valid conclusions on minimum
sampling requirements.

4.4. On the forest monitoring perspectives

Madagascar is one of the tropical countries involved in the UNFCC
REDD+ mechanism, which requires setting up a national forest
monitoring system that enables accurate and timely monitoring of
deforestation, degradation and increase in carbon stocks. DeFries et al.
(2007) drew up guidelines to fulfill the need for monitoring tropical
deforestation and identified both the sampling strategy and exhaustive
mapping (wall-to-wall) as an operational solution. Broich, Stehman,
Hansen, Potapov, and Shimabukuro (2009) suggested considering the
point sampling approach as a timely and cost effective component of a
monitoring system. This paper shows that, contrary to general guide-
lines on GHG reporting techniques, which suggest using one or the
other (GOFC-GOLD, 2010), the two methods are both essential and
complementary.

On one hand, exhaustive mapping provides invaluable spatially
explicit information which can be used not only for greenhouse gas
monitoring but also for forest conservation planning (Harper et al.,
2007) and spatial modeling of deforestation (Vieilledent et al., 2013).
On the other hand, point sampling has several non-negligible advan-
tages: i) it is less demanding technically, ii) it can address more subtle
changes in land use (e.g. degradation, regeneration) and iii) it reduces
systematic errors thanks to full visual inspection. The main drawback is
the time required for the visual interpretation and for the training
session on the image interpretation protocol. In our study, we reached
400–600 point observations per photo interpreter per day, which is a
large number of points but with a small sampling rate (see Section 2.4).
In this paper, we argue that both approaches should be implemented,
point sampling being an integral part of the wall-to-wall work
flow. To date, there are no widely accepted validation standards for
studies of forest cover change, partly because retrieving a reference
dataset is challenging (Foody, 2010). Even if the point sample
includes errors, the analysis of consistency errors between the two
datasets is repeatable, transparent and produces intelligible results
(e.g. in this study, less than 10% errors for stable land cover catego-
ries, around 20% for land change cover categories), provided that a
consistent sample design is used. More generally, if a point sample
database on land cover status (current and past) is maintained, it
could be used as an independent validation dataset.

In addition, this study focused on gross deforestation, which was
previously identified as the main source of anthropogenic GHG
emission in Madagascar (RPP, 2010). More subtle changes, such as re-
generation or degradation, also take place in Madagascar and should
be monitored as part of GHG reporting tasks but more importantly
with respect to biodiversity and forest resources.

Although the Landsat resolution was acceptable for a five-year
deforestation study, it did not allow visual discrimination between
a regenerated forest and a fallow and between a degraded forest
and an intact forest. Regarding clear cut of forest, in this study we
measured a median plot size of 3.1 ha in a five year period, which
roughly corresponds to a plot size 0.6 ha on an annual basis (~7 Landsat
pixels). The detection of clearingsmay then be jeopardized if onewants
to implement a forest monitoring system with measurements made at
intervals of less than five years. These difficulties were summarized by
DeFries (2007) “Smaller clearings [compared with clearing for settle-
ment] and more heterogeneous landscapes require data with higher
spatial resolution (5–15 m) and greater involvement of an interpreter
for visual analysis and more complex computer algorithms that detect
less pronounced differences in spectral reflectances”.

Therefore 10-m resolution images would greatly improve deforesta-
tion monitoring and would also enable detection of regeneration and
degradation. Timely monitoring could be achieved in the future thanks
to the recent activation of the SEAS-OI (Surveillance Environnemental
Assistée par Satellite dans l'Océan Indien), a satellite image reception an-
tenna based in Reunion islandwhose reception area covers thewhole of
Madagascar, and the ESA Sentinel-2 platform due to be launched in
2013. Based on open source software that is able to handle large
datasets, this method will facilitate further implementation of accurate,
cost-effective and reproducible forest monitoring systems.
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