

Estimation of future emissions of GreenHouse Gaz (GHG) Use of the Ex-Act tool

Training from the FORAE Project

SWISS PHILANTHROPY Foundation

Marie Nourtier – 24-07-18

Climate change threatens food security and rural communities

1 person in 9 suffers from hunger.

İİİİİİİİİ

The number of undernourished people will increase under climate change.

Smallholder farmers, forest dwellers, herders and fishers are the most affected by climate change.

24/07/2018

Source: FAO, 2016

24/07/2018

Official Global Warming Potential (GWP-100yr)

Cow breeding

0 0.07 0.3 0.6 1 1.7 2.5 3.7 5.4 7.2 9 90 Mg CO₂e.ha⁻¹.yr⁻¹

а

Source: CGIAR, 2016

• Laos is a contributor to CC, mainly because of AFOLU sector

The Ex-Act tool

itidæ

ilières & territoire

• Ex-Act is a tool developed by FAO

The Ex-Act tool

- Ex-Act is a tool developed by FAO
- Calculation of the GHG emissions without and with a project
 - Projection in the future, after the project if activities continue

The Ex-Act tool

24/07/2018

Example from the FORAE Project

Web GIS interface: vww.forae-viengkham.com

24/07/2018

10

- Land use map at the beginning of the project
- Projection of the land use in a management plan 20 years

dæ

Example from the FORAE Project

• Hypothesis on land use change – simple changes

Land use	Area in ha without PLUP	Area in ha in PLUP	Land use changes in Ex-Act
Protection Forest		124	annual crop -> forest (moderate degradation)
School		1	-
Buildings village		6	-
Conservation Forest	31	157	forest (moderate degradation) -> forest (low degradation)
Production Forest	115	83	forest (large degradation) -> forest (moderate degradation)
Pasture animal area		336	annual crop -> grassland
Rotation crop	1245	674	annual crop -> annual crop
Fruit Tree		16	annual crop -> perennial/tree crop
Cemetery Forests		2	forest -> forest

24/07/2018

Example from the FORAE Project

• Main GHG benefits are linked to forest – reduction of deforestation or forest restauration

Components of the project	Gross fluxes Without All GHG in tCC Positive = sou	With D2eq Irce / negative	Balance = sink
Land use changes			
Deforestation	85 293	11 125	-74 168
Afforestation	0	-38 460	-38 460
Other LUC	0	-32 070	-32 070
Agriculture			
Annual	-1 208	-9 239	-8 032
Perennial	0	-2 231	-2 231
Rice	0	0	0
Grassland & Livestocks			
Grassland	0	-1 737	-1 737
Livestocks	0	0	0
Degradation & Management	4 730	-18 625	-23 355
Inputs & Investments	0	0	0
Total	88 816	-91 237	-180 053
Per hectare	102	-105	-206
Per hectare per year	5.1	-5.2	-10.3

24/07/2018

Questions before an exercise on Ex-Act

• An imaginary project in Laos

On 10 000 ha and during 10 years

- Forest area is 3000 ha at the beginning
 - 50 % is degraded and will be restored
 - 50 ha/yr are converted for slash and burn agriculture without the project – the project will divide deforestation by 5
- 5000 ha are for agriculture
 - 1000 ha are for pasture and 500 ha will be added for the project from croplands
 - Number of cows is 30 per ha and it will be reduced to 10 per ha
 - 1000 ha are for rice System of rice

intensification (SRI) with water management will be implemented on 200 ha of those 1000 ha

- 1000 ha will be converted to agroforestry
- Improved agronomic techniques will be implemented on the rest of the fields
- 1500 ha are abandoned lands
 - 500 ha of forest regeneration
 - 500 ha converted to pasture
- 500 ha are wetlands
 - 100 ha will be converted to rice fields by the project

24/07/2018

- Step 1 :
 - Summary your land use with and without the project in a table

24/07/2018

15

• Identify your land use changes

Download v7.2: http://www.fao.org/tc/exact/carbonbalance-tool-ex-act/en/

24/07/2018

16

- Summary your land use with and without the project in a table
 - Identify your land use changes
- Step 2 :

• Step 1 :

- Start to complete Ex-Act Excel file
 - First, project description
 - And information on land use, sheet by sheet

• Step 1/:

- Summary your land use with and without the project in a table
- Identify your land use changes

LULC	initial area	activity	without project	with project
		deforestation will be divided by 5	500 ha	100 ha
forest	3000 ha	50% are degraded and will be restaured	1500 ha moderatly degraded	1500 ha with low degradation
		increase of pasture land	1000 ha	1500 ha
		decrease of cow cattles	30 cows/ha	10 cows/ha
croplands	5000 ha	irrigated rice -> SRI	C	200 ha
-		agroforestry	C	1000 ha
		improved agronomic techniques	0	2000 ha
		converted to pasture	C	500 ha
abandoned lands	1500 ha	converted to forests (forests regeneration)	0	500 ha
wetlands	500 ha	converted to irrigated rice	C	100 ha

Exercise • Step 2 : • Project description

24/07/2018

• Step 2 : LUC

- Positive impact of reduction of deforestation, forest regeneration and plantation of fruit trees
- Positive impact of grasslands management compared to abandoned lands or annual crops

2.1. Deforestation															
AEZ map	Zone 1 = Trop	oical rain forest	Zone 2 =	Tropical moist	deciduous	forest	Zone 3 = T	ropica	al dry fore	st		Zone 4	= Tropical shrubl	and	
Type of vegetation	HWP#	Fire Use?	Final use after de	orestation	<u> </u>	Forested	area (ha)	<u> </u>	14 Cal	. 0)eforeste	d area (ha)	Total Emissio	ons (tCO2-eq)	Balance
Inat will be deforested	(tDM/na)	(y/n)				Start	vvithout	_	vvitn		vvitnout	VVIth	i vvitnout	VVitn	474 405
Forest Zone 2	0	YES	Annual Cr	op		3000	2500	D	2900	D	500	100	214 281	42 856	-1/1 425
Select the vegetation	0	NO	Select Use after de	forestation		0	0	D	0	D	0	0	0	0	0
2.2. Afforestation and	Reforestatio	on													
? AEZ map	Zone 1 = Trop	oical rain forest	Zone 2 =	Tropical moist	deciduous	forest	Zone 3 = T	ropica	al dry fore	st		Zone 4	= Tropical shrubl	and	
_															
Type of vegetation		Fire Use?	Previous lan	d use			Area that	will b	e afforest	ed/ret	forested		Total Emission	ons (tCO2-eq)	Balance
that will be planted		(y/n)					Without	*	With	*			Without	With	
Forest Zone 2		NO	Set Aside	a			0	D	500	D			0	-73 136	-73 136
Select the vegetation		NO	Select previou	is use			0	D	0	D			0	0	0
2.3. Other Land Use C	Changes														
Fill with your description	Initial land us	e	Final lan	d use	Mess	sage	Fire Use?	' _	Area tr	ansfo	rmed (ha)		Total Emissi	ons (tCO2-eq)	Balance
							(y/n)		Without	*	With	*	Without	With	
agroforestry	Annual Crop	-	> Peren	nial/Tree Crop			NO		0	D	1000	D	0	-24 805	-24 805
conversion to pasture1	Annual Crop	_	\rightarrow G	rassland			NO		0	D	500	D	0	-21 509	-21 509
conversion to pasture2	Set Aside	_		rassland			NO		0	D	500	D	0	-10 522	-10 522
· ·	Coloct Initial La	nd Lleo	Soloct	Einal Land Lleo	Eill init	int the	NO		0	D	0	D	0	0	0

• Step 2 : Cropland

Detailed explanation of the meaning of each practice can be found in Smith et al (2007). Note that some practices may present some overlapping. Some descriptions of the options are briefly given below:

- <u>Improved agronomic practices</u>: all practices that may increase yields and thus generate higher residues. Examples of such practices reported by Smith et al. (2007) are, using improved crop varieties, extending crop rotations, and rotations with legumes crops.
- <u>Nutrient management</u>: application of fertilizer, manure, and biosolids, improving either the efficiency (adjusting application rate, improving timing, location...) or diminishing the potential losses (slow release fertilizer form or nitrification inhibitors).
- <u>Tillage/residue management</u>: adoption of practices with less tillage intensity ranging from minimum tillage to no-tillage and with or without residues maintenance on the field.
- <u>Water management</u>: enhanced irrigation measures that can lead to an increase in the productivity (and hence of the residues).
- <u>Manure application</u>: improving nutrient source using manure or Biosolids.

Some of the practices may result in concomitant gain in terms of C sequestration, reduction of N_2O and C sources but also emissions increases, e.g. increase N_2O potential emissions associated with increases on external N inputs. The emissions or reduction of N_2O and CH_4 are

3.1.2. Annual systems remaining a	annual systems (1	total area mus	t remain cons	stant)												
		Managemen	nt options	?	Defini	tions?		Yield?								
Fill with your description	Main season	Improved	Nutrient	No till & residue	Water	Manure	Residue	Yield		Area (ha)			Total Emissions (tCO2-eq)	Balance
	crop	practices	management	retention	management	application	management	(t/ha/yr)	Start	Without	*	With	*	Without	With	
improved agriculture on annual crop	Default	Yes	?	?	?	?	Please select		0	0	D	2000	D	0	-13 200	-13 200
description 2	Default	?	?	?	?	?	Please select		0	0	D	0	D	0	0	0
description 2	Dofault	2	2	2	2	2	Discos salasi		0	0		0	D	0	0	0

• Step 2 : grassland

• Positive impact of the reduction of the size of the cattle

4.2. Livestock (and manure management)

Livestock categories	Head num	nber (mean p	per y	ear)				Те	chnical mit	tigation opt	tion (%)					Production (meat, milk, etc)					Total Emissions		
	Start	Without projec	ct	With proje	ect	Fee	eding practic	es*	Sp	ecific Agents	S*		Breeding			in tonne	es of proc	duct per	year		(tCC	2-eq)	
			*		*	Start	Without	With	Start	Without	With	Start	Withou	With	-	Start	Without	With			Without	With	
Dairy cattle	0	0	D	0	D	0%	0%	0%	0%	0%	0%	0%	0%	0%							0	0	
Other cattle	30	30	D	10	D	0%	0%	0%	0%	0%	0%	0%	0%	0%							443	222	
Buffalo	0	0	D	0	D	0%	0%	0%	0%	0%	0%	0%	0%	0%							0	0	
Sheep	0	0	D	0	D	0%	0%	0%	0%	0%	0%	0%	0%	0%							0	0	
Swine (Market)	0	0	D	0	D	Feeding pr	actices: e.g. mo	re	Specific age	nts: specific ag	gents and	Breeding:	increasing								0	0	
Swine (Breeding)	0	0	D	0	D	 concentrate oilseeds to l 	es, adding certa the diet improv	in oils or ina	emisisons ()	opophores, var	s UH4 ocines	and better	ty through t manageme	preeding ont							0	0	

24/07/2018

Positive impact of forest restauration -

Negative impact of the conversion of peatlands -

22

• Step 2 : degradation

	NIN N	The <mark>EX</mark> -	Ante Carb	on-balanc	e Tool (E	X-ACT)											De	tailed	
3 A	C	Start	Description	Land Use Change	Crop producti	on	Grasslanc Livestock	l Ma De	anageme egradatio	nt vn \	Coastal Wetlands	Inp Invest	uts ments	Fi: Aqu	sherie: acultu	s ire	R	esults	
5												~							
2 7	5.1. Forest	degradati	on and manag	ement															
3 9	AEZ map		Zone 1 = Tro	pical rain forest		Zone 2 =	Tropical m	oist decidu	uous fores	st	Zone 3 = Tr	opical dry for	est		Zone 4	= Tro	pical shrub	land	
0	Type of veget	tation	Degradation	level of the veget	tation	Fire occ	urrence and	l severity				Area (ha)					Total E	missions	Balance
1	that will be de	graded	Initial State	At the end		Without	Periodicity	Impact	With	Periodicity	Impact	Start	Without		With	-	(tCC)2-eq)	
2				Without project	With project	(y/n)	(year)	(% burnt)	(y/n)	(year)	(% burnt)			*		*	Without	With	
3	Forest Zone 2		Moderate	Moderate	Low	NO	1	100%	NO	1	100%	1 500	1 500	D	1 500	D	0	-129 103	-129 103
4	Select the vege	etation	Select level	Select level	Select level	NO	1	100%	NO	1	100%		0	D	0	D	0	0	0
5	Select the vege	etation	Select level	Select level	Select level	NO	1	100%	NO	1	100%		0	D	0	D	0	0	0

5.2. Degradation and management of organic soils (peatlands)

5.2.1. Drainage of organic soils

27

28 29

30	5.2.1. Drainage of organic soils															
31																
32	Type of vegetation	Surfaces of dr	ained organic	: soil	ls (ha)			Percenta	ige (area) d	of ditches	This shou	ld concern	only area not	Total Em	issions	Balance
33	concerned by drainage		At the end						At the end	1		unted for a	Icewhere	(tCO2	2-eq)	
34		Start	Without	*	With	*		Start	Without	With	acco	united for e	ISCWITCIC	Without	With	
35	Forest	0	0	D	0	D		5%	5%	5%		0		0	0	0
36	Plantation	0	0	D	0	D		5%	5%	5%		0		0	0	0
37	Annual	0	0	D	0	D		5%	5%	5%		0		0	0	0
38	Perennial	0	0	D	0	D		5%	5%	5%		0		0	0	0
39	Grassland	0	0	D	100	D		5%	5%	5%		0		0	32 654	32 654
40				* No	ote concernir	ng dyr	namics of ch	hange : "D'	' correspond	ds to default	/linear, "I" to immediate and '	"E" to expo	nential (Please refer to the guideli	nes)		
								-								

- Step 1 :
 - Summary your land use with and without the project in a table

24/07/2018

- Identify your land use changes
- Step 2 :
 - Start to complete Ex-Act Excel file
 - First, project description
 - And information on land use, sheet by sheet
- Step 3 :
 - Check results on Ex-Act and identify potential errors
 - Report on results

• Report on results

Balance -20 000 -40 000 -60 000 -80 000 -100 000 -120 000 -120 000 -120 000 -140 000 -160 000 -180 000 -

24/07/2018

25

Components of the project	Gross fluxes Without All GHG in tC	With :O2eq	Balance	Share per GH All GHG in tC CO ₂	IG of the Baland O2eq	e	N₂O	CH₄	Result per Without	year With	Balance
	Positive = so	urce / negative	= sink	Biomass	Soil	Other					
Land use changes											
Deforestation	214 281	42 856	-171 425	-151 879	-13 442		-1 697	-4 406	21 428	4 286	-17 143
Afforestation	0	-73 136	-73 136	-67 320	-5 816		0	0	0	-7 314	-7 314
Other LUC	0	-56 836	-56 836	-612	-56 224		0	0	0	-5 684	-5 684
griculture											
Annual	0	-13 200	-13 200	0	-13 200		0	0	0	-1 320	-1 320
Perennial	0	-71 983	-71 983	-66 733	-5 250		0	0	0	-7 198	-7 198
Rice	47 888	45 301	-2 586	0	0		0	-2 586	4 789	4 530	-259
Grassland & Livestocks											
Grassland	0	-64 625	-64 625	0	-64 625		0	0	0	-6 463	-6 463
Livestocks	443	222	-222				-42	-180	44	22	-22
Degradation & Management	0	-96 450	-96 450	-119 409	18 961		1 756	2 243	0	-9 645	-9 645
Coastal wetlands	0	0	0	0	0		0	0	0	0	0
nputs & Investments	0	0	0			0	0	0	0	0	0
Fishery & Aquaculture	0	0	0			0	0	0	0	0	0
Total	262 613	-287 851	-550 463	-405 954	-139 596	0	17	-4 930	26 261	-28 785	-55 046
0.Start 1.Description	2100 3	3 Cropland	4 Grassland	Management	6 Coastal	7 Inputs	8 Fish	9 Results H	leln Vield	Calculations	

Balance per component

- High positive impact of forest restauration & managenement
- Positive impact of management of grassland
- Negative impact of the conversion of peatland

Thank you for your attention

Questions?

Marie Nourtier R&D project officer m.nourtier@nitidae.org www.nitidae.org

